Diabatic coupling constant using fragment charge difference method

Hello everyone,
I am trying to calculate diabatic coupling constants associated with the excited-state electron transfer between an organic molecule OPP and amine TEA. Initially both the OPP and TEA are neutral species. The electron transfer is happening between OPP* and TEA resulting in OPP-. and TEA.+ To calculate the diabatic coupling constant associated with this excited state electron transfer reaction I am using the generalized Mulliken-Hush/ fragment-charge difference method. I am using the following input file-
$molecule
0 1
C -0.32300000 0.10600000 0.00000000
C 1.03900000 0.10600000 0.00100000
C 1.80600000 1.31900000 0.00000000
C 1.03900000 2.53200000 -0.00100000
C -0.32300000 2.53200000 -0.00100000
C -1.09100000 1.31900000 -0.00100000
H -0.83000000 -0.85000000 0.00100000
H 1.54500000 -0.85000000 0.00100000
H 1.54600000 3.48800000 -0.00100000
H -0.83000000 3.48800000 -0.00200000
C 3.23700000 1.31900000 0.00100000
C 3.99300000 2.53100000 0.00100000
C 3.99300000 0.10700000 0.00200000
C 5.37100000 2.52200000 0.00100000
H 3.48600000 3.48600000 0.00000000
C 5.37100000 0.11600000 0.00200000
H 3.48600000 -0.84800000 0.00200000
C 6.08000000 1.31900000 0.00200000
H 5.90900000 3.46400000 0.00100000
H 5.90900000 -0.82600000 0.00300000
H 7.16400000 1.31900000 0.00300000
C -2.52200000 1.31900000 -0.00100000
C -3.27700000 2.53100000 -0.00100000
C -3.27800000 0.10700000 -0.00100000
C -4.65500000 2.52300000 -0.00200000
H -2.77000000 3.48700000 -0.00100000
C -4.65600000 0.11600000 -0.00100000
H -2.77100000 -0.84800000 0.00000000
C -5.36400000 1.32000000 -0.00200000
H -5.19200000 3.46500000 -0.00200000
H -5.19300000 -0.82600000 -0.00100000
H -6.44800000 1.32000000 -0.00200000
N -0.36701067 1.68824533 3.38249688
C -1.78167646 1.43704598 3.64136861
H -2.34179462 2.33860483 3.38114315
H -1.96051672 1.26456795 4.71923618
C -2.33498641 0.27781102 2.82151960
H -1.82964545 -0.66406760 3.04982681
H -3.40004212 0.13871039 3.02429624
H -2.20266756 0.47842941 1.75698920
C 0.49154282 0.73760452 4.08283178
H -0.01971576 -0.22725993 4.11126149
H 0.63617682 1.03764935 5.13704433
C 1.83817229 0.54474348 3.39784806
H 2.41307353 1.47358825 3.35519885
H 2.44097345 -0.19236685 3.93579612
H 1.68917631 0.19655591 2.37383897
C 0.00240226 3.06959004 3.67349322
H -0.42066889 3.39645644 4.64251497
H 1.08857714 3.11437128 3.78665143
C -0.40318539 4.03545695 2.56671014
H -1.48728570 4.06553962 2.42594594
H -0.07203163 5.04994315 2.80279685
H 0.04930877 3.72844691 1.62183403
$end
$rem
BASIS = 6-311G**
METHOD = CIS
CIS_N_ROOTS 20
CIS_SINGLETS true
CIS_TRIPLETS false
STS_GMH true !turns on the GMH calculation
STS_FCD true !turns on the FCD calculation
STS_DONOR 33-54 !define the donor fragment as atoms 1-6 for FCD calc.
STS_ACCEPTOR 1-32 !define the acceptor fragment as atoms 7-12 for FCD calc.
MEM_STATIC 4000
SOLVENT_METHOD = PCM
$end

$pcm
heavypoints 590
method swig
radii bondi
solver inversion
theory cpcm
$end

$solvent
dielectric 8.93
opticaldielectric 2.028
$end

Now the main part of the output that I obtained is-

 FCD ELECTRONIC-COUPLING CALCULATION


   Fragment Charges of Ground State with Nuclear Charges

State Q(D) Q(A) dQ

   0     0.044915   -0.044915    0.089829

Within CIS/TDA Excited States:

   Fragment Charges of Singlet Excited State with Nuclear Charges

State Q(D) Q(A) dQ

   1     0.039004   -0.039004    0.078009 ( -0.011820)
   2     0.036146   -0.036146    0.072292 ( -0.017537)
   3     0.048516   -0.048516    0.097032 (  0.007202)
   4     0.041332   -0.041332    0.082664 ( -0.007166)
   5     0.045929   -0.045929    0.091859 (  0.002029)
   6     0.047126   -0.047126    0.094252 (  0.004423)
   7     0.056071   -0.056071    0.112141 (  0.022312)
   8     0.032622   -0.032622    0.065243 ( -0.024586)
   9     0.055098   -0.055098    0.110195 (  0.020366)
  10     0.049150   -0.049150    0.098299 (  0.008470)
  11     0.833274   -0.833274    1.666547 (  1.576718)
  12     0.032797   -0.032797    0.065594 ( -0.024235)
  13     0.137694   -0.137694    0.275387 (  0.185558)
  14    -0.018564    0.018564   -0.037128 ( -0.126958)
  15    -0.014853    0.014853   -0.029706 ( -0.119535)
  16     0.037684   -0.037684    0.075368 ( -0.014462)
  17    -0.059937    0.059937   -0.119874 ( -0.209703)
  18     0.086026   -0.086026    0.172052 (  0.082223)
  19     0.025696   -0.025696    0.051392 ( -0.038437)
  20     0.063851   -0.063851    0.127702 (  0.037873)

The gist is that I are not sure how to interpret the fact that electron transfer seems to be favorable for a higher excited state than the first. For example here the 11th excited state features significant changes in the charges. So is e transfer happening at the 11th excited state? But this is of very high energy!
Do we still use the GMH/FCD coupling obtained for the 1st excited state or the charge transfer state?

Any comments and suggestion will be highly useful.

Higher excited states will generally move more charge around but in general you would need to recompute diabatic states for each new set of adiabatic states, rather than recycling them.

Thank you for your answer. Will you please elaborate this with an example? That will be so helpful.

I’m simply saying that if you are referring to excited state #11, it seems like no surprise that would be moving considerable charge around. Furthermore, diabatic states constructed from one set of (low-lying) adiabatic states, and the electronic couplings computed using those diabatic states, are not going to be valid for higher-lying states.