Hello,
I’m trying to use the libwfa module to generate NTOs for EOM-CC-SF transitions in QChem 5.4.1.
For EOM-EE calculations, I typically invoke the following three $rem options:
state_analysis = true
molden_format = true
nto_pairs = 2
which generates the molden file with the naming convention “eom[xx]-ccsd_transition[state #]_ [symmetry]_no.mo” in the .plots/ directory. This file appears to contain natural orbitals w/ occupation numbers substituted for energies.
Adding in the option cc_trans_prop = true gets me an additional molden file of the format
“ccsd_eom[xx]ccsd_rhfref[multiplicity][state1][state2]_nto.mo,” which appears to contain particle/hole NTOs with positive/negative amplitude coefficients substituted for energies.
When I run with EOM-CC-SF, however, I am only able to invoke the first three $rem options, and invoking the cc_trans_prop = true flag causes Q-Chem to crash. No NTO output is written to the second .plot file.
Is there something I’m doing wrong here? Would appreciate any advice!
I’ve attached example output and ./plot files below.
Best,
Phelan
output:
Running Job 1 of 1 SiSH_energy.inp
qchem SiSH_energy.inp_232126.0 /central/scratch/hutzlerlab/test_NTO/ 0
/central/groups/hutzlerlab/software/qchem/exe/qcprog.exe_s SiSH_energy.inp_232126.0 /central/scratch/hutzlerlab/test_NTO/
Welcome to Q-Chem
A Quantum Leap Into The Future Of Chemistry
Q-Chem 5.4, Q-Chem, Inc., Pleasanton, CA (2021)
License issued to: SRG Nick Hutzler, California Institute of Technology
E. Epifanovsky, A. T. B. Gilbert, Xintian Feng, Joonho Lee, Yuezhi Mao,
N. Mardirossian, P. Pokhilko, A. White, M. Wormit, M. P. Coons,
A. L. Dempwolff, Zhengting Gan, D. Hait, P. R. Horn, L. D. Jacobson,
I. Kaliman, J. Kussmann, A. W. Lange, Ka Un Lao, D. S. Levine, Jie Liu,
S. C. McKenzie, A. F. Morrison, K. Nanda, F. Plasser, D. R. Rehn,
M. L. Vidal, Zhi-Qiang You, Ying Zhu, B. Alam, B. Albrecht,
A. Aldossary, E. Alguire, J. H. Andersen, D. Barton, K. Begam, A. Behn,
Y. A. Bernard, E. J. Berquist, H. Burton, A. Carreras, K. Carter-Fenk,
R. Chakraborty, A. D. Chien, K. D. Closser, V. Cofer-Shabica,
S. Dasgupta, Jia Deng, M. de Wergifosse, M. Diedenhofen, Hainam Do,
S. Ehlert, Po-Tung Fang, S. Fatehi, Qingguo Feng, T. Friedhoff,
J. Gayvert, Qinghui Ge, G. Gidofalvi, M. Goldey, J. Gomes,
C. Gonzalez-Espinoza, S. Gulania, A. Gunina, M. W. D. Hanson-Heine,
P. H. P. Harbach, A. W. Hauser, M. F. Herbst, M. Hernandez Vera,
M. Hodecker, Z. C. Holden, S. Houck, Xunkun Huang, Kerwin Hui,
B. C. Huynh, M. Ivanov, Hyunjun Ji, Hanjie Jiang, B. Kaduk, S. Kaehler,
K. Khistyaev, Jaehoon Kim, P. Klunzinger, Z. Koczor-Benda,
Joong Hoon Koh, D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter,
K. Kue, A. Kunitsa, T. Kus, A. Landau, K. V. Lawler, D. Lefrancois,
S. Lehtola, Rain Li, Yi-Pei Li, Jiashu Liang, M. Liebenthal,
Hung-Hsuan Lin, You-Sheng Lin, Fenglai Liu, Kuan-Yu Liu,
M. Loipersberger, A. Luenser, A. Manjanath, P. Manohar, E. Mansoor,
S. F. Manzer, Shan-Ping Mao, A. V. Marenich, T. Markovich, S. Mason,
S. A. Maurer, P. F. McLaughlin, M. F. S. J. Menger, J.-M. Mewes,
S. A. Mewes, P. Morgante, J. W. Mullinax, K. J. Oosterbaan, G. Paran,
Alexander C. Paul, Suranjan K. Paul, F. Pavosevic, Zheng Pei, S. Prager,
E. I. Proynov, E. Ramos, B. Rana, A. E. Rask, A. Rettig, R. M. Richard,
F. Rob, E. Rossomme, T. Scheele, M. Scheurer, M. Schneider,
N. Sergueev, S. M. Sharada, W. Skomorowski, D. W. Small, C. J. Stein,
Yu-Chuan Su, E. J. Sundstrom, Zhen Tao, J. Thirman, T. Tsuchimochi,
N. M. Tubman, S. P. Veccham, O. Vydrov, J. Wenzel, J. Witte, A. Yamada,
Kun Yao, S. Yeganeh, S. R. Yost, A. Zech, Igor Ying Zhang, Xing Zhang,
Yu Zhang, D. Zuev, A. Aspuru-Guzik, A. T. Bell, N. A. Besley,
K. B. Bravaya, B. R. Brooks, D. Casanova, Jeng-Da Chai, S. Coriani,
C. J. Cramer, A. E. DePrince, III, R. A. DiStasio Jr., A. Dreuw,
B. D. Dunietz, T. R. Furlani, W. A. Goddard III, S. Grimme,
S. Hammes-Schiffer, T. Head-Gordon, W. J. Hehre, Chao-Ping Hsu,
T.-C. Jagau, Yousung Jung, A. Klamt, Jing Kong, D. S. Lambrecht,
WanZhen Liang, N. J. Mayhall, C. W. McCurdy, J. B. Neaton,
C. Ochsenfeld, J. A. Parkhill, R. Peverati, V. A. Rassolov, Yihan Shao,
L. V. Slipchenko, T. Stauch, R. P. Steele, J. E. Subotnik,
A. J. W. Thom, A. Tkatchenko, D. G. Truhlar, T. Van Voorhis,
T. A. Wesolowski, K. B. Whaley, H. L. Woodcock III, P. M. Zimmerman,
S. Faraji, P. M. W. Gill, M. Head-Gordon, J. M. Herbert, A. I. Krylov
Additional authors for Version 5.4.1:
S. Kotaru, Shaozhi Li, Xiangyuan Li, F. Matz, A. Molle, Haisheng Ren,
Yingli Su, Hung-Yi Tsai, C. Utku, Fang Wang
Contributors to earlier versions of Q-Chem not listed above:
R. D. Adamson, B. Austin, R. Baer, J. Baker, G. J. O. Beran,
K. Brandhorst, S. T. Brown, E. F. C. Byrd, A. K. Chakraborty,
G. K. L. Chan, Chun-Min Chang, Yunqing Chen, C.-L. Cheng,
Siu Hung Chien, D. M. Chipman, D. L. Crittenden, H. Dachsel,
R. J. Doerksen, A. D. Dutoi, R. G. Edgar, J. Fosso-Tande,
L. Fusti-Molnar, D. Ghosh, A. Ghysels, A. Golubeva-Zadorozhnaya,
J. Gonthier, M. S. Gordon, S. R. Gwaltney, G. Hawkins, J. E. Herr,
A. Heyden, S. Hirata, E. G. Hohenstein, G. Kedziora, F. J. Keil,
C. Kelley, Jihan Kim, R. A. King, R. Z. Khaliullin, P. P. Korambath,
W. Kurlancheek, A. Laurent, A. M. Lee, M. S. Lee, S. V. Levchenko,
Ching Yeh Lin, D. Liotard, E. Livshits, R. C. Lochan, I. Lotan,
L. A. Martinez-Martinez, P. E. Maslen, N. Nair, D. P. O'Neill,
D. Neuhauser, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, R. Olson,
T. M. Perrine, B. Peters, P. A. Pieniazek, A. Prociuk, Y. M. Rhee,
J. Ritchie, M. A. Rohrdanz, E. Rosta, N. J. Russ, H. F. Schaefer III,
M. W. Schmidt, N. E. Schultz, S. Sharma, N. Shenvi, C. D. Sherrill,
A. C. Simmonett, A. Sodt, T. Stein, D. Stuck, K. S. Thanthiriwatte,
V. Vanovschi, L. Vogt, Tao Wang, A. Warshel, M. A. Watson,
C. F. Williams, Q. Wu, X. Xu, Jun Yang, W. Zhang, Yan Zhao
Please cite Q-Chem as follows:
Y. Shao et al., Mol. Phys. 113, 184-215 (2015)
DOI: 10.1080/00268976.2014.952696
Q-Chem 5.4.1 for Intel X86 EM64T Linux
Parts of Q-Chem use Armadillo 9.800.1 (Horizon Scraper).
http://arma.sourceforge.net/
Q-Chem begins on Sun Sep 5 14:15:22 2021
Host:
0
Scratch files written to /central/scratch/hutzlerlab/test_NTO//
Aug1521 |scratch|qcdevops|jenkins|workspace|build_RNUM 7577
Processing $rem in /central/groups/hutzlerlab/software/qchem/config/preferences:
Processing $rem in /home/pyyu/.qchemrc:
Core orbitals will be frozen
Checking the input file for inconsistencies... ...done.
--------------------------------------------------------------
User input:
--------------------------------------------------------------
$molecule
0 4
S
H 1 1.345756
Si 1 2.132699 2 99.446517
$end
$rem
BASIS = aug-cc-pVTZ
JOB_TYPE = SP
METHOD = EOM-CCSD
SF_STATES = [0,1]
SCF_CONVERGENCE = 8
SCF_MAX_CYCLES = 100
CC_trans_prop = true
state_analysis = true
molden_format = true
nto_pairs = 5
$end
--------------------------------------------------------------
----------------------------------------------------------------
Standard Nuclear Orientation (Angstroms)
I Atom X Y Z
----------------------------------------------------------------
1 S 0.9530276036 -0.0869734645 -0.0000000000
2 H 1.2350357337 1.2289029074 0.0000000000
3 Si -1.1773912422 0.0116194660 0.0000000000
----------------------------------------------------------------
Molecular Point Group Cs NOp = 2
Largest Abelian Subgroup Cs NOp = 2
Nuclear Repulsion Energy = 64.61334667 hartrees
There are 17 alpha and 14 beta electrons
Requested basis set is aug-cc-pVTZ
There are 41 shells and 123 basis functions
Total memory of 8000 MB is distributed as follows:
MEM_STATIC is set to 192 MB
QALLOC/CCMAN JOB total memory use is 7808 MB
Warning: actual memory use might exceed 8000 MB
Total QAlloc Memory Limit 8000 MB
Mega-Array Size 188 MB
MEM_STATIC part 192 MB
Distance Matrix (Angstroms)
S ( 1) H ( 2)
H ( 2) 1.345756
Si( 3) 2.132699 2.702144
A cutoff of 1.0D-14 yielded 861 shell pairs
There are 7829 function pairs ( 10635 Cartesian)
Smallest overlap matrix eigenvalue = 2.47E-04
Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01
Standard Electronic Orientation quadrupole field applied
Nucleus-field energy = 0.0000000014 hartrees
Guess from superposition of atomic densities
Warning: Energy on first SCF cycle will be non-variational
SAD guess density has 31.000000 electrons
-----------------------------------------------------------------------
General SCF calculation program by
Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
Bang C. Huynh
-----------------------------------------------------------------------
Hartree-Fock
A unrestricted SCF calculation will be
performed using DIIS
SCF converges when DIIS error is below 1.0e-08
---------------------------------------
Cycle Energy DIIS error
---------------------------------------
1 -687.0109237544 1.32e-02
2 -686.9188028016 1.40e-03
3 -686.9624503400 6.01e-04
4 -686.9718077364 3.10e-04
5 -686.9766461265 1.73e-04
6 -686.9787364166 1.02e-04
7 -686.9795896632 4.51e-05
8 -686.9797229679 2.21e-05
9 -686.9797541897 8.22e-06
10 -686.9797573967 3.33e-06
11 -686.9797579061 1.31e-06
12 -686.9797579817 5.90e-07
13 -686.9797579952 2.96e-07
14 -686.9797579992 1.20e-07
15 -686.9797580000 3.98e-08
16 -686.9797580000 1.19e-08
17 -686.9797580000 3.97e-09 Convergence criterion met
---------------------------------------
SCF time: CPU 63.12s wall 64.00s
<S^2> = 3.759029073
SCF energy in the final basis set = -686.9797580000
Total energy in the final basis set = -686.9797580000
------------------------------------------------------------------------------
CCMAN2: suite of methods based on coupled cluster
and equation of motion theories.
Components:
* libvmm-1.3-trunk
by Evgeny Epifanovsky, Ilya Kaliman.
* libtensor-2.5-trunk
by Evgeny Epifanovsky, Michael Wormit, Dmitry Zuev, Sam Manzer,
Ilya Kaliman.
* libcc-2.5-trunk
by Evgeny Epifanovsky, Arik Landau, Tomasz Kus, Kirill Khistyaev,
Dmitry Zuev, Prashant Manohar, Xintian Feng, Anna Krylov,
Matthew Goldey, Alec White, Thomas Jagau, Kaushik Nanda,
Anastasia Gunina, Alexander Kunitsa, Joonho Lee.
CCMAN original authors:
Anna I. Krylov, C. David Sherrill, Steven R. Gwaltney,
Edward F. C. Byrd (2000)
Sergey V. Levchenko, Lyudmila V. Slipchenko, Tao Wang,
Ana-Maria C. Cristian (2003)
Piotr A. Pieniazek, C. Melania Oana, Evgeny Epifanovsky (2007)
Prashant Manohar (2009)
------------------------------------------------------------------------------
Allocating and initializing 7808MB of RAM...
Calculation will run on 1 core.
Alpha MOs, Unrestricted
-- Occupied --
-91.982 -68.833 -8.984 -6.668 -6.664 -6.663 -6.181 -4.291
1 A' 2 A' 3 A' 4 A' 1 A" 5 A' 6 A' 7 A'
-4.290 -4.282 -0.999 -0.697 -0.559 -0.453 -0.437 -0.322
2 A" 8 A' 9 A' 10 A' 11 A' 12 A' 3 A" 13 A'
-0.294
4 A"
-- Virtual --
0.031 0.040 0.064 0.067 0.090 0.095 0.114 0.114
14 A' 15 A' 16 A' 5 A" 17 A' 18 A' 19 A' 6 A"
0.125 0.138 0.138 0.169 0.178 0.190 0.228 0.246
20 A' 21 A' 7 A" 22 A' 23 A' 8 A" 24 A' 25 A'
0.264 0.281 0.313 0.322 0.328 0.356 0.358 0.403
9 A" 26 A' 27 A' 28 A' 10 A" 29 A' 11 A" 30 A'
0.417 0.422 0.428 0.446 0.470 0.475 0.485 0.494
12 A" 31 A' 13 A" 32 A' 33 A' 34 A' 14 A" 35 A'
0.507 0.531 0.550 0.572 0.575 0.601 0.609 0.631
15 A" 36 A' 16 A" 37 A' 38 A' 17 A" 39 A' 40 A'
0.654 0.668 0.716 0.723 0.823 0.848 0.867 0.874
18 A" 41 A' 42 A' 19 A" 43 A' 44 A' 20 A" 45 A'
0.895 0.960 0.962 0.963 1.045 1.083 1.103 1.126
21 A" 22 A" 46 A' 47 A' 48 A' 49 A' 23 A" 50 A'
1.144 1.161 1.200 1.220 1.264 1.269 1.281 1.357
24 A" 51 A' 25 A" 52 A' 53 A' 26 A" 54 A' 27 A"
1.413 1.419 1.422 1.471 1.483 1.496 1.558 1.574
55 A' 28 A" 56 A' 29 A" 57 A' 58 A' 59 A' 30 A"
1.592 1.631 1.634 1.719 1.793 2.064 2.141 2.151
60 A' 61 A' 31 A" 62 A' 63 A' 32 A" 64 A' 33 A"
2.227 2.343 2.367 2.435 2.441 2.449 2.547 2.557
65 A' 66 A' 34 A" 35 A" 67 A' 68 A' 36 A" 69 A'
2.601 2.628 2.680 2.744 2.779 2.961 3.033 3.461
70 A' 37 A" 38 A" 71 A' 72 A' 73 A' 74 A' 75 A'
3.948 3.956 4.116 4.315 4.367 4.457 4.532 4.654
39 A" 76 A' 77 A' 40 A" 78 A' 41 A" 79 A' 80 A'
5.058 6.924
81 A' 82 A'
Beta MOs, Unrestricted
-- Occupied --
-91.979 -68.814 -8.980 -6.662 -6.659 -6.657 -6.153 -4.263
1 A' 2 A' 3 A' 4 A' 1 A" 5 A' 6 A' 7 A'
-4.254 -4.254 -0.964 -0.581 -0.478 -0.398
8 A' 2 A" 9 A' 10 A' 11 A' 3 A"
-- Virtual --
-0.039 0.036 0.044 0.049 0.051 0.092 0.099 0.110
12 A' 13 A' 14 A' 15 A' 4 A" 16 A' 17 A' 5 A"
0.114 0.131 0.145 0.146 0.163 0.164 0.190 0.198
18 A' 6 A" 19 A' 20 A' 21 A' 7 A" 22 A' 23 A'
0.210 0.236 0.269 0.274 0.310 0.329 0.344 0.351
8 A" 24 A' 9 A" 25 A' 26 A' 27 A' 28 A' 10 A"
0.373 0.377 0.414 0.498 0.501 0.507 0.511 0.517
11 A" 29 A' 30 A' 31 A' 12 A" 32 A' 13 A" 33 A'
0.532 0.533 0.543 0.545 0.559 0.569 0.596 0.600
34 A' 14 A" 15 A" 35 A' 36 A' 16 A" 37 A' 38 A'
0.621 0.626 0.650 0.671 0.687 0.731 0.739 0.843
17 A" 39 A' 40 A' 18 A" 41 A' 19 A" 42 A' 43 A'
0.855 0.888 0.892 0.900 0.970 0.972 0.981 1.062
44 A' 45 A' 20 A" 21 A" 22 A" 46 A' 47 A' 48 A'
1.088 1.106 1.152 1.153 1.179 1.220 1.243 1.289
49 A' 23 A" 24 A" 50 A' 51 A' 25 A" 52 A' 53 A'
1.336 1.341 1.400 1.451 1.482 1.487 1.520 1.521
26 A" 54 A' 27 A" 55 A' 56 A' 28 A" 29 A" 57 A'
1.539 1.601 1.611 1.615 1.644 1.652 1.731 1.802
58 A' 59 A' 60 A' 30 A" 31 A" 61 A' 62 A' 63 A'
2.068 2.150 2.167 2.241 2.356 2.375 2.444 2.453
32 A" 64 A' 33 A" 65 A' 66 A' 34 A" 35 A" 67 A'
2.458 2.559 2.570 2.614 2.641 2.722 2.778 2.805
68 A' 36 A" 69 A' 70 A' 37 A" 38 A" 71 A' 72 A'
2.979 3.059 3.465 3.950 3.962 4.128 4.317 4.371
73 A' 74 A' 75 A' 39 A" 76 A' 77 A' 40 A" 78 A'
4.460 4.536 4.658 5.061 6.929
41 A" 79 A' 80 A' 81 A' 82 A'
Occupation and symmetry of molecular orbitals
Point group: Cs (2 irreducible representations).
A' A" All
------------------------------------------
All molecular orbitals:
- Alpha 82 41 123
- Beta 82 41 123
------------------------------------------
Alpha orbitals:
- Frozen occupied 8 2 10
- Active occupied 5 2 7
- Active virtual 69 37 106
- Frozen virtual 0 0 0
------------------------------------------
Beta orbitals:
- Frozen occupied 8 2 10
- Active occupied 3 1 4
- Active virtual 71 38 109
- Frozen virtual 0 0 0
------------------------------------------
Import integrals: CPU 0.00 s wall 0.00 s
Import integrals: CPU 18.75 s wall 21.30 s
MP2 amplitudes: CPU 0.11 s wall 0.11 s
Running a double precision version
CCSD T amplitudes will be solved using DIIS.
Start Size MaxIter EConv TConv
3 7 100 1.00e-06 1.00e-04
------------------------------------------------------------------------------
Energy (a.u.) Ediff Tdiff Comment
------------------------------------------------------------------------------
-687.21309861
1 -687.23204099 1.89e-02 5.41e-01
2 -687.23866533 6.62e-03 6.45e-02
3 -687.24053241 1.87e-03 2.13e-02
4 -687.24211518 1.58e-03 1.31e-02 Switched to DIIS steps.
5 -687.24261063 4.95e-04 6.28e-03
6 -687.24288763 2.77e-04 5.09e-03
7 -687.24294011 5.25e-05 1.44e-03
8 -687.24295858 1.85e-05 7.20e-04
9 -687.24296051 1.94e-06 3.25e-04
10 -687.24296117 6.55e-07 1.12e-04
11 -687.24296152 3.55e-07 4.80e-05
------------------------------------------------------------------------------
-687.24296152 CCSD T converged.
End of double precision
SCF energy = -686.97975800
MP2 energy = -687.21309861
CCSD correlation energy = -0.26320352
CCSD total energy = -687.24296152
CCSD T1^2 = 0.0177 T2^2 = 0.1474 Leading amplitudes:
Amplitude Orbitals with energies
0.0942 11 (A') B -> 12 (A') B
-0.4778 -0.0394
-0.0329 10 (A') B -> 12 (A') B
-0.5814 -0.0394
0.0220 3 (A") B -> 6 (A") B
-0.3981 0.1308
-0.0213 13 (A') A -> 22 (A') A
-0.3222 0.1688
Amplitude Orbitals with energies
0.0328 12 (A') A 11 (A') B -> 19 (A') A 12 (A') B
-0.4533 -0.4778 0.1135 -0.0394
-0.0328 12 (A') A 11 (A') B -> 12 (A') B 19 (A') A
-0.4533 -0.4778 -0.0394 0.1135
-0.0328 11 (A') B 12 (A') A -> 19 (A') A 12 (A') B
-0.4778 -0.4533 0.1135 -0.0394
0.0328 11 (A') B 12 (A') A -> 12 (A') B 19 (A') A
-0.4778 -0.4533 -0.0394 0.1135
Computing CCSD intermediates for later calculations in double precision
Finished.
Running a double precision version
CCSD Lambda amplitudes will be solved using DIIS.
Start Size MaxIter EConv LConv
3 7 100 1.00e-06 1.00e-04
------------------------------------------------------------------------------
Enorm Ldiff Comment
------------------------------------------------------------------------------
1 4.06e-02 3.38e-02
2 8.73e-03 3.75e-03
3 3.50e-03 1.39e-03
4 1.72e-03 7.77e-04 Switched to DIIS steps.
5 6.31e-04 3.57e-04
6 2.68e-04 1.18e-04
7 1.06e-04 3.87e-05
8 3.71e-05 1.38e-05
9 1.54e-05 3.44e-06
10 6.99e-06 1.90e-06
11 3.18e-06 9.40e-07
12 1.71e-06 5.56e-07
13 9.18e-07 4.10e-07
------------------------------------------------------------------------------
CCSD Lambda converged.
CCSD calculation: CPU 67.91 s wall 68.33 s
Solving for EOMSF-CCSD A" transitions.
Running a double precision version
EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson.
Amplitudes will be solved using standard algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
1 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 2 1.21e-01 0.3144
1 0 3 6.91e-02 -1.3883
2 0 4 6.85e-03 -2.5189
3 0 5 8.20e-04 -2.6518
4 0 6 1.51e-04 -2.6691
5 0 7 3.73e-05 -2.6734
6 1 8 7.29e-06 -2.6750*
Davidson procedure converged
EOMSF transition 1/A"
Total energy = -687.34126486 a.u. Excitation energy = -2.6750 eV.
R1^2 = 0.9450 R2^2 = 0.0550 Res^2 = 7.29e-06
Conv-d = yes
Amplitude Transitions between orbitals
0.9065 4 (A") A -> 12 (A') B
0.1476 4 (A") A -> 13 (A') B
0.1311 4 (A") A -> 15 (A') B
0.1289 3 (A") A -> 12 (A') B
0.1136 4 (A") A -> 19 (A') B
Summary of significant orbitals:
Number Type Irrep Energy
15 Occ Alpha 3 (A") -0.4367
17 Occ Alpha 4 (A") -0.2942
15 Vir Beta 12 (A') -0.0394
16 Vir Beta 13 (A') 0.0364
18 Vir Beta 15 (A') 0.0492
25 Vir Beta 19 (A') 0.1447
Running a double precision version
EOM-CCSD/MP2 left amplitudes will be solved using Davidson.
Amplitudes will be solved using MOM algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
1 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 1 2.62e-03 -2.6750
1 0 2 1.19e-03 -2.6750
2 0 3 8.45e-05 -2.6749
3 0 4 1.49e-05 -2.6750
4 1 5 3.06e-06 -2.6750*
Davidson procedure converged
Excited state properties for EOMSF-CCSD transition 1/A"
Dipole moment (a.u.): 0.342389 (X 0.019517, Y 0.341832, Z 0.000000)
R-squared (a.u.): 193.729143 (XX 147.721710, YY 26.100425, ZZ 19.907008)
Gauge origin (a.u.): (0.000000, 0.000000, 0.000000)
Angular momentum (a.u.) against gauge origin:
(X 0.000000i, Y 0.000000i, Z 0.009911i)
Traces of the OPDMs: Tr(AA) 16.000000, Tr(BB) 15.000000
State OPDM analysis using libwa module will be excecuted
NOs (alpha)
Occupation of frontier NOs:
0.0047 0.0049 0.0078 0.0087 0.0300 0.9689 0.9819 0.9909 0.9944 0.9979
Number of electrons: 16.000000
NOs (beta)
Occupation of frontier NOs:
0.0031 0.0033 0.0071 0.0118 0.0189 0.9419 0.9987 0.9998 1.0000 1.0000
Number of electrons: 15.000000
NOs (spin-traced)
Occupation of frontier NOs:
0.0074 0.0094 0.0106 0.0203 0.0510 0.9878 1.9082 1.9886 1.9924 1.9973
Number of electrons: 31.000000
Number of unpaired electrons: n_u = 1.23018, n_u,nl = 1.04396
NO participation ratio (PR_NO): 1.532215
Mulliken Population Analysis
Atom Charge (e) Spin (e)
------------------------------------
1 S -0.277333 0.030894
2 H 0.196195 -0.037210
3 Si 0.081138 -0.993684
------------------------------------
Sum: -0.000000 -1.000000
Multipole moment analysis of the density matrix
Molecular charge: -0.000000
Number of electrons: 31.000000
Center of electronic charge [Ang]: [ -0.000333, -0.005835, 0.000000]
Total nuclear charge: 31.000000
Center of nuclear charge [Ang]: [ 0.000000, 0.000000, 0.000000]
Dipole moment [D]: 0.870266
Cartesian components [D]: [ 0.049608, 0.868851, -0.000000]
RMS size of the density [Ang]: 1.322859
Cartesian components [Ang]: [ 1.155161, 0.485526, 0.424056]
EOMSF-CCSD calculation: CPU 15.05 s wall 15.23 s
Start computing the transition properties
------------------------------------------------------------------------------
State A: ccsd: 0/A'
State B: eomsf_ccsd: 1/A"
Energy GAP = 0.098303 a.u. = 2.674971 eV
Transition dipole moment (a.u.):
A->B: 0.000000 (X 0.000000, Y 0.000000, Z 0.000000)
B->A: 0.000000 (X 0.000000, Y 0.000000, Z 0.000000)
Oscillator strength (a.u.): 0.000000
Transition angular momentum against gauge origin (a.u.):
A->B: (X 0.000000i, Y 0.000000i, Z 0.000000i)
B->A: (X 0.000000i, Y 0.000000i, Z 0.000000i)
Electronic circular dichroism (ECD):
Transition dipole moment/angular momentum:
A->B->A: (X 0.000000, Y 0.000000, Z 0.000000)
Rotatory strength, length gauge (a.u.): 0.000000
Transition linear momentum/angular momentum:
A->B->A: (X 0.000000, Y 0.000000, Z 0.000000)
Rotatory strength, velocity gauge (a.u.): -0.000000
Norm of one-particle transition density matrix:
A->B: 0.935537; B->A: 0.976439
||gamma^AB||*||gamma^BA||: 0.913495
State analysis of transition OPDM (A->B) using libwa module will be excecuted
Q-Chem fatal error occurred in module /scratch/qcdevops/jenkins/workspace/build_qchem_linux_distrib/tags/qc541/qchem/ccman2/qchem/ccman2_main.C, line 26:
libwfa::exciton_analysis_base::combine, /scratch/qcdevops/jenkins/workspace/build_qchem_linux_distrib/tags/qc541/qchem/libwfa/analyses/exciton_analysis.C (135): sa+sb
Please submit a crash report at q-chem.com/reporter