EOM-CC-SF natural transition orbitals

Hello,

I’m trying to use the libwfa module to generate NTOs for EOM-CC-SF transitions in QChem 5.4.1.

For EOM-EE calculations, I typically invoke the following three $rem options:

state_analysis = true
molden_format = true
nto_pairs = 2

which generates the molden file with the naming convention “eom[xx]-ccsd_transition[state #]_ [symmetry]_no.mo” in the .plots/ directory. This file appears to contain natural orbitals w/ occupation numbers substituted for energies.

Adding in the option cc_trans_prop = true gets me an additional molden file of the format
“ccsd_eom[xx]ccsd_rhfref[multiplicity][state1][state2]_nto.mo,” which appears to contain particle/hole NTOs with positive/negative amplitude coefficients substituted for energies.

When I run with EOM-CC-SF, however, I am only able to invoke the first three $rem options, and invoking the cc_trans_prop = true flag causes Q-Chem to crash. No NTO output is written to the second .plot file.

Is there something I’m doing wrong here? Would appreciate any advice!

I’ve attached example output and ./plot files below.

Best,
Phelan

output:

Running Job 1 of 1 SiSH_energy.inp
qchem SiSH_energy.inp_232126.0 /central/scratch/hutzlerlab/test_NTO/ 0
/central/groups/hutzlerlab/software/qchem/exe/qcprog.exe_s SiSH_energy.inp_232126.0 /central/scratch/hutzlerlab/test_NTO/
                  Welcome to Q-Chem
     A Quantum Leap Into The Future Of Chemistry


 Q-Chem 5.4, Q-Chem, Inc., Pleasanton, CA (2021)

 License issued to: SRG Nick Hutzler, California Institute of Technology

 E. Epifanovsky,  A. T. B. Gilbert,  Xintian Feng,  Joonho Lee,  Yuezhi Mao,  
 N. Mardirossian,  P. Pokhilko,  A. White,  M. Wormit,  M. P. Coons,  
 A. L. Dempwolff,  Zhengting Gan,  D. Hait,  P. R. Horn,  L. D. Jacobson,  
 I. Kaliman,  J. Kussmann,  A. W. Lange,  Ka Un Lao,  D. S. Levine,  Jie Liu,  
 S. C. McKenzie,  A. F. Morrison,  K. Nanda,  F. Plasser,  D. R. Rehn,  
 M. L. Vidal,  Zhi-Qiang You,  Ying Zhu,  B. Alam,  B. Albrecht,  
 A. Aldossary,  E. Alguire,  J. H. Andersen,  D. Barton,  K. Begam,  A. Behn,  
 Y. A. Bernard,  E. J. Berquist,  H. Burton,  A. Carreras,  K. Carter-Fenk,  
 R. Chakraborty,  A. D. Chien,  K. D. Closser,  V. Cofer-Shabica,  
 S. Dasgupta,  Jia Deng,  M. de Wergifosse,  M. Diedenhofen,  Hainam Do,  
 S. Ehlert,  Po-Tung Fang,  S. Fatehi,  Qingguo Feng,  T. Friedhoff,  
 J. Gayvert,  Qinghui Ge,  G. Gidofalvi,  M. Goldey,  J. Gomes,  
 C. Gonzalez-Espinoza,  S. Gulania,  A. Gunina,  M. W. D. Hanson-Heine,  
 P. H. P. Harbach,  A. W. Hauser,  M. F. Herbst,  M. Hernandez Vera,  
 M. Hodecker,  Z. C. Holden,  S. Houck,  Xunkun Huang,  Kerwin Hui,  
 B. C. Huynh,  M. Ivanov,  Hyunjun Ji,  Hanjie Jiang,  B. Kaduk,  S. Kaehler,  
 K. Khistyaev,  Jaehoon Kim,  P. Klunzinger,  Z. Koczor-Benda,  
 Joong Hoon Koh,  D. Kosenkov,  L. Koulias,  T. Kowalczyk,  C. M. Krauter,  
 K. Kue,  A. Kunitsa,  T. Kus,  A. Landau,  K. V. Lawler,  D. Lefrancois,  
 S. Lehtola,  Rain Li,  Yi-Pei Li,  Jiashu Liang,  M. Liebenthal,  
 Hung-Hsuan Lin,  You-Sheng Lin,  Fenglai Liu,  Kuan-Yu Liu,  
 M. Loipersberger,  A. Luenser,  A. Manjanath,  P. Manohar,  E. Mansoor,  
 S. F. Manzer,  Shan-Ping Mao,  A. V. Marenich,  T. Markovich,  S. Mason,  
 S. A. Maurer,  P. F. McLaughlin,  M. F. S. J. Menger,  J.-M. Mewes,  
 S. A. Mewes,  P. Morgante,  J. W. Mullinax,  K. J. Oosterbaan,  G. Paran,  
 Alexander C. Paul,  Suranjan K. Paul,  F. Pavosevic,  Zheng Pei,  S. Prager,  
 E. I. Proynov,  E. Ramos,  B. Rana,  A. E. Rask,  A. Rettig,  R. M. Richard,  
 F. Rob,  E. Rossomme,  T. Scheele,  M. Scheurer,  M. Schneider,  
 N. Sergueev,  S. M. Sharada,  W. Skomorowski,  D. W. Small,  C. J. Stein,  
 Yu-Chuan Su,  E. J. Sundstrom,  Zhen Tao,  J. Thirman,  T. Tsuchimochi,  
 N. M. Tubman,  S. P. Veccham,  O. Vydrov,  J. Wenzel,  J. Witte,  A. Yamada,  
 Kun Yao,  S. Yeganeh,  S. R. Yost,  A. Zech,  Igor Ying Zhang,  Xing Zhang,  
 Yu Zhang,  D. Zuev,  A. Aspuru-Guzik,  A. T. Bell,  N. A. Besley,  
 K. B. Bravaya,  B. R. Brooks,  D. Casanova,  Jeng-Da Chai,  S. Coriani,  
 C. J. Cramer,  A. E. DePrince, III,  R. A. DiStasio Jr.,  A. Dreuw,  
 B. D. Dunietz,  T. R. Furlani,  W. A. Goddard III,  S. Grimme,  
 S. Hammes-Schiffer,  T. Head-Gordon,  W. J. Hehre,  Chao-Ping Hsu,  
 T.-C. Jagau,  Yousung Jung,  A. Klamt,  Jing Kong,  D. S. Lambrecht,  
 WanZhen Liang,  N. J. Mayhall,  C. W. McCurdy,  J. B. Neaton,  
 C. Ochsenfeld,  J. A. Parkhill,  R. Peverati,  V. A. Rassolov,  Yihan Shao,  
 L. V. Slipchenko,  T. Stauch,  R. P. Steele,  J. E. Subotnik,  
 A. J. W. Thom,  A. Tkatchenko,  D. G. Truhlar,  T. Van Voorhis,  
 T. A. Wesolowski,  K. B. Whaley,  H. L. Woodcock III,  P. M. Zimmerman,  
 S. Faraji,  P. M. W. Gill,  M. Head-Gordon,  J. M. Herbert,  A. I. Krylov

 Additional authors for Version 5.4.1: 
 S. Kotaru,  Shaozhi Li,  Xiangyuan Li,  F. Matz,  A. Molle,  Haisheng Ren,  
 Yingli Su,  Hung-Yi Tsai,  C. Utku,  Fang Wang

 Contributors to earlier versions of Q-Chem not listed above: 
 R. D. Adamson,  B. Austin,  R. Baer,  J. Baker,  G. J. O. Beran,  
 K. Brandhorst,  S. T. Brown,  E. F. C. Byrd,  A. K. Chakraborty,  
 G. K. L. Chan,  Chun-Min Chang,  Yunqing Chen,  C.-L. Cheng,  
 Siu Hung Chien,  D. M. Chipman,  D. L. Crittenden,  H. Dachsel,  
 R. J. Doerksen,  A. D. Dutoi,  R. G. Edgar,  J. Fosso-Tande,  
 L. Fusti-Molnar,  D. Ghosh,  A. Ghysels,  A. Golubeva-Zadorozhnaya,  
 J. Gonthier,  M. S. Gordon,  S. R. Gwaltney,  G. Hawkins,  J. E. Herr,  
 A. Heyden,  S. Hirata,  E. G. Hohenstein,  G. Kedziora,  F. J. Keil,  
 C. Kelley,  Jihan Kim,  R. A. King,  R. Z. Khaliullin,  P. P. Korambath,  
 W. Kurlancheek,  A. Laurent,  A. M. Lee,  M. S. Lee,  S. V. Levchenko,  
 Ching Yeh Lin,  D. Liotard,  E. Livshits,  R. C. Lochan,  I. Lotan,  
 L. A. Martinez-Martinez,  P. E. Maslen,  N. Nair,  D. P. O'Neill,  
 D. Neuhauser,  E. Neuscamman,  C. M. Oana,  R. Olivares-Amaya,  R. Olson,  
 T. M. Perrine,  B. Peters,  P. A. Pieniazek,  A. Prociuk,  Y. M. Rhee,  
 J. Ritchie,  M. A. Rohrdanz,  E. Rosta,  N. J. Russ,  H. F. Schaefer III,  
 M. W. Schmidt,  N. E. Schultz,  S. Sharma,  N. Shenvi,  C. D. Sherrill,  
 A. C. Simmonett,  A. Sodt,  T. Stein,  D. Stuck,  K. S. Thanthiriwatte,  
 V. Vanovschi,  L. Vogt,  Tao Wang,  A. Warshel,  M. A. Watson,  
 C. F. Williams,  Q. Wu,  X. Xu,  Jun Yang,  W. Zhang,  Yan Zhao

 Please cite Q-Chem as follows:
 Y. Shao et al., Mol. Phys. 113, 184-215 (2015)
 DOI: 10.1080/00268976.2014.952696

 Q-Chem 5.4.1 for Intel X86 EM64T Linux

 Parts of Q-Chem use Armadillo 9.800.1 (Horizon Scraper).
 http://arma.sourceforge.net/

 Q-Chem begins on Sun Sep  5 14:15:22 2021  

 Host: 
0

     Scratch files written to /central/scratch/hutzlerlab/test_NTO//
 Aug1521 |scratch|qcdevops|jenkins|workspace|build_RNUM 7577   
 Processing $rem in /central/groups/hutzlerlab/software/qchem/config/preferences:
 Processing $rem in /home/pyyu/.qchemrc:
 Core orbitals will be frozen

 Checking the input file for inconsistencies... 	...done.

--------------------------------------------------------------
User input:
--------------------------------------------------------------
$molecule
0 4
S
H  1 1.345756
Si 1 2.132699 2 99.446517
$end

$rem
BASIS  =  aug-cc-pVTZ
JOB_TYPE  =  SP
METHOD  =  EOM-CCSD
SF_STATES = [0,1]
SCF_CONVERGENCE  =  8
SCF_MAX_CYCLES  =  100
CC_trans_prop = true
state_analysis = true
molden_format = true
nto_pairs = 5
$end
--------------------------------------------------------------
 ----------------------------------------------------------------
             Standard Nuclear Orientation (Angstroms)
    I     Atom           X                Y                Z
 ----------------------------------------------------------------
    1      S       0.9530276036    -0.0869734645    -0.0000000000
    2      H       1.2350357337     1.2289029074     0.0000000000
    3      Si     -1.1773912422     0.0116194660     0.0000000000
 ----------------------------------------------------------------
 Molecular Point Group                 Cs    NOp =  2
 Largest Abelian Subgroup              Cs    NOp =  2
 Nuclear Repulsion Energy =          64.61334667 hartrees
 There are       17 alpha and       14 beta electrons
 Requested basis set is aug-cc-pVTZ
 There are 41 shells and 123 basis functions
 Total memory of 8000 MB is distributed as follows: 
   MEM_STATIC is set to 192 MB
   QALLOC/CCMAN JOB total memory use is  7808 MB
 Warning: actual memory use might exceed 8000 MB

 Total QAlloc Memory Limit   8000 MB
 Mega-Array Size       188 MB
 MEM_STATIC part       192 MB

                       Distance Matrix (Angstroms)
             S (  1)   H (  2)
   H (  2)  1.345756
   Si(  3)  2.132699  2.702144
 
 A cutoff of  1.0D-14 yielded    861 shell pairs
 There are      7829 function pairs (     10635 Cartesian)
 Smallest overlap matrix eigenvalue = 2.47E-04

 Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01

 Standard Electronic Orientation quadrupole field applied
 Nucleus-field energy     =     0.0000000014 hartrees
 Guess from superposition of atomic densities
 Warning:  Energy on first SCF cycle will be non-variational
 SAD guess density has 31.000000 electrons

 -----------------------------------------------------------------------
  General SCF calculation program by
  Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
  David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
  Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
  Bang C. Huynh
 -----------------------------------------------------------------------
 Hartree-Fock
 A unrestricted SCF calculation will be
 performed using DIIS
 SCF converges when DIIS error is below 1.0e-08
 ---------------------------------------
  Cycle       Energy         DIIS error
 ---------------------------------------
    1    -687.0109237544      1.32e-02  
    2    -686.9188028016      1.40e-03  
    3    -686.9624503400      6.01e-04  
    4    -686.9718077364      3.10e-04  
    5    -686.9766461265      1.73e-04  
    6    -686.9787364166      1.02e-04  
    7    -686.9795896632      4.51e-05  
    8    -686.9797229679      2.21e-05  
    9    -686.9797541897      8.22e-06  
   10    -686.9797573967      3.33e-06  
   11    -686.9797579061      1.31e-06  
   12    -686.9797579817      5.90e-07  
   13    -686.9797579952      2.96e-07  
   14    -686.9797579992      1.20e-07  
   15    -686.9797580000      3.98e-08  
   16    -686.9797580000      1.19e-08  
   17    -686.9797580000      3.97e-09  Convergence criterion met
 ---------------------------------------
 SCF time:   CPU 63.12s  wall 64.00s 
<S^2> =          3.759029073
 SCF   energy in the final basis set =     -686.9797580000
 Total energy in the final basis set =     -686.9797580000


 ------------------------------------------------------------------------------

   CCMAN2: suite of methods based on coupled cluster
           and equation of motion theories.

   Components:
   * libvmm-1.3-trunk
     by Evgeny Epifanovsky, Ilya Kaliman.
   * libtensor-2.5-trunk
     by Evgeny Epifanovsky, Michael Wormit, Dmitry Zuev, Sam Manzer, 
        Ilya Kaliman.
   * libcc-2.5-trunk
     by Evgeny Epifanovsky, Arik Landau, Tomasz Kus, Kirill Khistyaev, 
        Dmitry Zuev, Prashant Manohar, Xintian Feng, Anna Krylov, 
        Matthew Goldey, Alec White, Thomas Jagau, Kaushik Nanda, 
        Anastasia Gunina, Alexander Kunitsa, Joonho Lee.

   CCMAN original authors:
   Anna I. Krylov, C. David Sherrill, Steven R. Gwaltney,
   Edward F. C. Byrd (2000)
   Sergey V. Levchenko, Lyudmila V. Slipchenko, Tao Wang,
   Ana-Maria C. Cristian (2003)
   Piotr A. Pieniazek, C. Melania Oana, Evgeny Epifanovsky (2007)
   Prashant Manohar (2009)

 ------------------------------------------------------------------------------


 Allocating and initializing 7808MB of RAM...
 Calculation will run on 1 core.

 
 Alpha MOs, Unrestricted
 -- Occupied --                  
-91.982 -68.833  -8.984  -6.668  -6.664  -6.663  -6.181  -4.291
  1 A'    2 A'    3 A'    4 A'    1 A"    5 A'    6 A'    7 A'                 
 -4.290  -4.282  -0.999  -0.697  -0.559  -0.453  -0.437  -0.322
  2 A"    8 A'    9 A'   10 A'   11 A'   12 A'    3 A"   13 A'                 
 -0.294
  4 A"                                                                         
 -- Virtual --                   
  0.031   0.040   0.064   0.067   0.090   0.095   0.114   0.114
 14 A'   15 A'   16 A'    5 A"   17 A'   18 A'   19 A'    6 A"                 
  0.125   0.138   0.138   0.169   0.178   0.190   0.228   0.246
 20 A'   21 A'    7 A"   22 A'   23 A'    8 A"   24 A'   25 A'                 
  0.264   0.281   0.313   0.322   0.328   0.356   0.358   0.403
  9 A"   26 A'   27 A'   28 A'   10 A"   29 A'   11 A"   30 A'                 
  0.417   0.422   0.428   0.446   0.470   0.475   0.485   0.494
 12 A"   31 A'   13 A"   32 A'   33 A'   34 A'   14 A"   35 A'                 
  0.507   0.531   0.550   0.572   0.575   0.601   0.609   0.631
 15 A"   36 A'   16 A"   37 A'   38 A'   17 A"   39 A'   40 A'                 
  0.654   0.668   0.716   0.723   0.823   0.848   0.867   0.874
 18 A"   41 A'   42 A'   19 A"   43 A'   44 A'   20 A"   45 A'                 
  0.895   0.960   0.962   0.963   1.045   1.083   1.103   1.126
 21 A"   22 A"   46 A'   47 A'   48 A'   49 A'   23 A"   50 A'                 
  1.144   1.161   1.200   1.220   1.264   1.269   1.281   1.357
 24 A"   51 A'   25 A"   52 A'   53 A'   26 A"   54 A'   27 A"                 
  1.413   1.419   1.422   1.471   1.483   1.496   1.558   1.574
 55 A'   28 A"   56 A'   29 A"   57 A'   58 A'   59 A'   30 A"                 
  1.592   1.631   1.634   1.719   1.793   2.064   2.141   2.151
 60 A'   61 A'   31 A"   62 A'   63 A'   32 A"   64 A'   33 A"                 
  2.227   2.343   2.367   2.435   2.441   2.449   2.547   2.557
 65 A'   66 A'   34 A"   35 A"   67 A'   68 A'   36 A"   69 A'                 
  2.601   2.628   2.680   2.744   2.779   2.961   3.033   3.461
 70 A'   37 A"   38 A"   71 A'   72 A'   73 A'   74 A'   75 A'                 
  3.948   3.956   4.116   4.315   4.367   4.457   4.532   4.654
 39 A"   76 A'   77 A'   40 A"   78 A'   41 A"   79 A'   80 A'                 
  5.058   6.924
 81 A'   82 A'                                                                 
 
 Beta MOs, Unrestricted
 -- Occupied --                  
-91.979 -68.814  -8.980  -6.662  -6.659  -6.657  -6.153  -4.263
  1 A'    2 A'    3 A'    4 A'    1 A"    5 A'    6 A'    7 A'                 
 -4.254  -4.254  -0.964  -0.581  -0.478  -0.398
  8 A'    2 A"    9 A'   10 A'   11 A'    3 A"                                 
 -- Virtual --                   
 -0.039   0.036   0.044   0.049   0.051   0.092   0.099   0.110
 12 A'   13 A'   14 A'   15 A'    4 A"   16 A'   17 A'    5 A"                 
  0.114   0.131   0.145   0.146   0.163   0.164   0.190   0.198
 18 A'    6 A"   19 A'   20 A'   21 A'    7 A"   22 A'   23 A'                 
  0.210   0.236   0.269   0.274   0.310   0.329   0.344   0.351
  8 A"   24 A'    9 A"   25 A'   26 A'   27 A'   28 A'   10 A"                 
  0.373   0.377   0.414   0.498   0.501   0.507   0.511   0.517
 11 A"   29 A'   30 A'   31 A'   12 A"   32 A'   13 A"   33 A'                 
  0.532   0.533   0.543   0.545   0.559   0.569   0.596   0.600
 34 A'   14 A"   15 A"   35 A'   36 A'   16 A"   37 A'   38 A'                 
  0.621   0.626   0.650   0.671   0.687   0.731   0.739   0.843
 17 A"   39 A'   40 A'   18 A"   41 A'   19 A"   42 A'   43 A'                 
  0.855   0.888   0.892   0.900   0.970   0.972   0.981   1.062
 44 A'   45 A'   20 A"   21 A"   22 A"   46 A'   47 A'   48 A'                 
  1.088   1.106   1.152   1.153   1.179   1.220   1.243   1.289
 49 A'   23 A"   24 A"   50 A'   51 A'   25 A"   52 A'   53 A'                 
  1.336   1.341   1.400   1.451   1.482   1.487   1.520   1.521
 26 A"   54 A'   27 A"   55 A'   56 A'   28 A"   29 A"   57 A'                 
  1.539   1.601   1.611   1.615   1.644   1.652   1.731   1.802
 58 A'   59 A'   60 A'   30 A"   31 A"   61 A'   62 A'   63 A'                 
  2.068   2.150   2.167   2.241   2.356   2.375   2.444   2.453
 32 A"   64 A'   33 A"   65 A'   66 A'   34 A"   35 A"   67 A'                 
  2.458   2.559   2.570   2.614   2.641   2.722   2.778   2.805
 68 A'   36 A"   69 A'   70 A'   37 A"   38 A"   71 A'   72 A'                 
  2.979   3.059   3.465   3.950   3.962   4.128   4.317   4.371
 73 A'   74 A'   75 A'   39 A"   76 A'   77 A'   40 A"   78 A'                 
  4.460   4.536   4.658   5.061   6.929
 41 A"   79 A'   80 A'   81 A'   82 A'                                         

 Occupation and symmetry of molecular orbitals

 Point group: Cs (2 irreducible representations).

                           A'   A"    All 
 ------------------------------------------
 All molecular orbitals:
  - Alpha                  82   41    123 
  - Beta                   82   41    123 
 ------------------------------------------
 Alpha orbitals:
  - Frozen occupied        8    2     10  
  - Active occupied        5    2     7   
  - Active virtual         69   37    106 
  - Frozen virtual         0    0     0   
 ------------------------------------------
 Beta orbitals:
  - Frozen occupied        8    2     10  
  - Active occupied        3    1     4   
  - Active virtual         71   38    109 
  - Frozen virtual         0    0     0   
 ------------------------------------------

 Import integrals:   CPU 0.00 s  wall 0.00 s

 Import integrals:   CPU 18.75 s  wall 21.30 s

 MP2 amplitudes:   CPU 0.11 s  wall 0.11 s

Running a double precision version
           CCSD T amplitudes will be solved using DIIS.

           Start     Size      MaxIter   EConv     TConv     
           3         7         100       1.00e-06  1.00e-04  
 ------------------------------------------------------------------------------
           Energy (a.u.)   Ediff      Tdiff       Comment
 ------------------------------------------------------------------------------
          -687.21309861                           
     1    -687.23204099   1.89e-02   5.41e-01     
     2    -687.23866533   6.62e-03   6.45e-02     
     3    -687.24053241   1.87e-03   2.13e-02     
     4    -687.24211518   1.58e-03   1.31e-02     Switched to DIIS steps.
     5    -687.24261063   4.95e-04   6.28e-03     
     6    -687.24288763   2.77e-04   5.09e-03     
     7    -687.24294011   5.25e-05   1.44e-03     
     8    -687.24295858   1.85e-05   7.20e-04     
     9    -687.24296051   1.94e-06   3.25e-04     
    10    -687.24296117   6.55e-07   1.12e-04     
    11    -687.24296152   3.55e-07   4.80e-05     
 ------------------------------------------------------------------------------
          -687.24296152                           CCSD T converged.

End of double precision
 SCF energy                 = -686.97975800
 MP2 energy                 = -687.21309861
 CCSD correlation energy    =   -0.26320352
 CCSD total energy          = -687.24296152

 CCSD  T1^2 = 0.0177  T2^2 = 0.1474  Leading amplitudes:

 Amplitude    Orbitals with energies
  0.0942       11 (A') B                 ->    12 (A') B                  
              -0.4778                         -0.0394                     
 -0.0329       10 (A') B                 ->    12 (A') B                  
              -0.5814                         -0.0394                     
  0.0220       3 (A") B                  ->    6 (A") B                   
              -0.3981                          0.1308                     
 -0.0213       13 (A') A                 ->    22 (A') A                  
              -0.3222                          0.1688                     

 Amplitude    Orbitals with energies
  0.0328       12 (A') A     11 (A') B   ->    19 (A') A     12 (A') B    
              -0.4533       -0.4778            0.1135       -0.0394       
 -0.0328       12 (A') A     11 (A') B   ->    12 (A') B     19 (A') A    
              -0.4533       -0.4778           -0.0394        0.1135       
 -0.0328       11 (A') B     12 (A') A   ->    19 (A') A     12 (A') B    
              -0.4778       -0.4533            0.1135       -0.0394       
  0.0328       11 (A') B     12 (A') A   ->    12 (A') B     19 (A') A    
              -0.4778       -0.4533           -0.0394        0.1135       

 Computing CCSD intermediates for later calculations in double precision
 Finished.

Running a double precision version
           CCSD Lambda amplitudes will be solved using DIIS.
           Start     Size      MaxIter   EConv     LConv     
           3         7         100       1.00e-06  1.00e-04  
 ------------------------------------------------------------------------------
            Enorm      Ldiff       Comment
 ------------------------------------------------------------------------------
     1     4.06e-02   3.38e-02     
     2     8.73e-03   3.75e-03     
     3     3.50e-03   1.39e-03     
     4     1.72e-03   7.77e-04     Switched to DIIS steps.
     5     6.31e-04   3.57e-04     
     6     2.68e-04   1.18e-04     
     7     1.06e-04   3.87e-05     
     8     3.71e-05   1.38e-05     
     9     1.54e-05   3.44e-06     
    10     6.99e-06   1.90e-06     
    11     3.18e-06   9.40e-07     
    12     1.71e-06   5.56e-07     
    13     9.18e-07   4.10e-07     
 ------------------------------------------------------------------------------
                                   CCSD Lambda converged.

 CCSD calculation:   CPU 67.91 s  wall 68.33 s

        Solving for EOMSF-CCSD A" transitions.

Running a double precision version
       EOMSF-CCSD/MP2 right amplitudes will be solved using Davidson.
        Amplitudes will be solved using standard  algorithm.
     Hard-coded thresholds: 
     LinDepThresh=1.00e-15  NormThresh=1.00e-06  ReorthogonThresh=1.00e-02

      Roots     MaxVec    MaxIter   Precond   Conv      Shift    
      1         120       60        1         1.00e-05  0.00e+00  
 ------------------------------------------------------------------------------
      Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
 ------------------------------------------------------------------------------
      0    0      2     1.21e-01   0.3144   
      1    0      3     6.91e-02   -1.3883   
      2    0      4     6.85e-03   -2.5189   
      3    0      5     8.20e-04   -2.6518   
      4    0      6     1.51e-04   -2.6691   
      5    0      7     3.73e-05   -2.6734   
      6    1      8     7.29e-06   -2.6750*  

     Davidson procedure converged

 EOMSF transition 1/A"
 Total energy = -687.34126486 a.u.  Excitation energy = -2.6750 eV.
 R1^2 = 0.9450  R2^2 = 0.0550  Res^2 = 7.29e-06
 Conv-d = yes

 Amplitude    Transitions between orbitals
  0.9065       4 (A") A                  ->    12 (A') B                  
  0.1476       4 (A") A                  ->    13 (A') B                  
  0.1311       4 (A") A                  ->    15 (A') B                  
  0.1289       3 (A") A                  ->    12 (A') B                  
  0.1136       4 (A") A                  ->    19 (A') B                  

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               15      Occ  Alpha       3 (A")     -0.4367
               17      Occ  Alpha       4 (A")     -0.2942
               15      Vir  Beta       12 (A')     -0.0394
               16      Vir  Beta       13 (A')      0.0364
               18      Vir  Beta       15 (A')      0.0492
               25      Vir  Beta       19 (A')      0.1447


Running a double precision version
      EOM-CCSD/MP2 left amplitudes will be solved using Davidson.
        Amplitudes will be solved using MOM  algorithm.
     Hard-coded thresholds: 
     LinDepThresh=1.00e-15  NormThresh=1.00e-06  ReorthogonThresh=1.00e-02

      Roots     MaxVec    MaxIter   Precond   Conv      Shift    
      1         120       60        1         1.00e-05  0.00e+00  
 ------------------------------------------------------------------------------
      Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
 ------------------------------------------------------------------------------
      0    0      1     2.62e-03   -2.6750   
      1    0      2     1.19e-03   -2.6750   
      2    0      3     8.45e-05   -2.6749   
      3    0      4     1.49e-05   -2.6750   
      4    1      5     3.06e-06   -2.6750*  

     Davidson procedure converged

 Excited state properties for  EOMSF-CCSD transition 1/A"
 Dipole moment (a.u.): 0.342389 (X 0.019517, Y 0.341832, Z 0.000000)
 R-squared (a.u.): 193.729143 (XX 147.721710, YY 26.100425, ZZ 19.907008)
 Gauge origin (a.u.): (0.000000, 0.000000, 0.000000)
 Angular momentum (a.u.) against gauge origin: 
 (X 0.000000i, Y 0.000000i, Z 0.009911i)
 Traces of the OPDMs: Tr(AA) 16.000000, Tr(BB) 15.000000

State OPDM analysis using libwa module will be excecuted
 NOs (alpha)
   Occupation of frontier NOs:
      0.0047   0.0049   0.0078   0.0087   0.0300   0.9689   0.9819   0.9909   0.9944   0.9979
   Number of electrons: 16.000000
 NOs (beta)
   Occupation of frontier NOs:
      0.0031   0.0033   0.0071   0.0118   0.0189   0.9419   0.9987   0.9998   1.0000   1.0000
   Number of electrons: 15.000000
 NOs (spin-traced)
   Occupation of frontier NOs:
      0.0074   0.0094   0.0106   0.0203   0.0510   0.9878   1.9082   1.9886   1.9924   1.9973
   Number of electrons: 31.000000
   Number of unpaired electrons: n_u =  1.23018, n_u,nl =  1.04396
   NO participation ratio (PR_NO):  1.532215
 
 Mulliken Population Analysis
 Atom      Charge (e)        Spin (e)
 ------------------------------------
 1  S       -0.277333        0.030894
 2  H        0.196195       -0.037210
 3 Si        0.081138       -0.993684
 ------------------------------------
 Sum:       -0.000000       -1.000000
 
 Multipole moment analysis of the density matrix
   Molecular charge:                      -0.000000
   Number of electrons:                   31.000000
     Center of electronic charge [Ang]: [ -0.000333,  -0.005835,   0.000000]
   Total nuclear charge:                  31.000000
     Center of nuclear charge [Ang]:    [  0.000000,   0.000000,   0.000000]
   Dipole moment [D]:                     0.870266
     Cartesian components [D]:          [  0.049608,   0.868851,  -0.000000]
   RMS size of the density [Ang]:         1.322859
     Cartesian components [Ang]:        [  1.155161,   0.485526,   0.424056]
 

 EOMSF-CCSD calculation:   CPU 15.05 s  wall 15.23 s


 Start computing the transition properties

 ------------------------------------------------------------------------------
 State A: ccsd: 0/A'
 State B: eomsf_ccsd: 1/A"
 Energy GAP = 0.098303 a.u. = 2.674971 eV
 Transition dipole moment (a.u.):
   A->B: 0.000000 (X 0.000000, Y 0.000000, Z 0.000000)
   B->A: 0.000000 (X 0.000000, Y 0.000000, Z 0.000000)
 Oscillator strength (a.u.): 0.000000
 Transition angular momentum against gauge origin (a.u.):
   A->B:  (X 0.000000i, Y 0.000000i, Z 0.000000i)
   B->A:  (X 0.000000i, Y 0.000000i, Z 0.000000i)

 Electronic circular dichroism (ECD):
 Transition dipole moment/angular momentum:
   A->B->A:  (X 0.000000, Y 0.000000, Z 0.000000)
   Rotatory strength, length gauge (a.u.): 0.000000
 Transition linear momentum/angular momentum:
   A->B->A:  (X 0.000000, Y 0.000000, Z 0.000000)
   Rotatory strength, velocity gauge (a.u.): -0.000000

 Norm of one-particle transition density matrix:
   A->B: 0.935537;   B->A: 0.976439
   ||gamma^AB||*||gamma^BA||: 0.913495

State analysis of transition OPDM (A->B) using libwa module will be excecuted

 Q-Chem fatal error occurred in module /scratch/qcdevops/jenkins/workspace/build_qchem_linux_distrib/tags/qc541/qchem/ccman2/qchem/ccman2_main.C, line 26:

 libwfa::exciton_analysis_base::combine, /scratch/qcdevops/jenkins/workspace/build_qchem_linux_distrib/tags/qc541/qchem/libwfa/analyses/exciton_analysis.C (135): sa+sb


 Please submit a crash report at q-chem.com/reporter 

And the second molden file (ccsd_eomsf_ccsd_2_1_nto.mo), which normally contains NTOs, but only has geometry and basis data on my EOMSF job.

[Molden Format]
[Atoms] (Angs)
  S      1   16      0.95302760     -0.08697346     -0.00000000
  H      2    1      1.23503573      1.22890291      0.00000000
 Si      3   14     -1.17739124      0.01161947      0.00000000
[GTO]
1    0
S    13    1.000000
   3.74100000E+05    5.42140000E-05 
   5.60500000E+04    4.20855000E-04 
   1.27600000E+04    2.20698000E-03 
   3.61500000E+03    9.19258000E-03 
   1.18300000E+03    3.21123000E-02 
   4.28800000E+02    9.46683000E-02 
   1.67800000E+02    2.23630000E-01 
   6.94700000E+01    3.74393000E-01 
   2.98400000E+01    3.29108000E-01 
   1.27200000E+01    8.47038000E-02 
   5.24400000E+00    4.40851000E-04 
   2.21900000E+00    1.64827000E-03 
   3.49000000E-01    3.01306000E-04 
S    13    1.000000
   3.74100000E+05   -1.49837000E-05 
   5.60500000E+04   -1.16198000E-04 
   1.27600000E+04   -6.11583000E-04 
   3.61500000E+03   -2.55370000E-03 
   1.18300000E+03   -9.08708000E-03 
   4.28800000E+02   -2.77045000E-02 
   1.67800000E+02   -7.20020000E-02 
   6.94700000E+01   -1.46439000E-01 
   2.98400000E+01   -1.95150000E-01 
   1.27200000E+01    8.19193000E-03 
   5.24400000E+00    5.16601000E-01 
   2.21900000E+00    5.42178000E-01 
   3.49000000E-01   -9.18072000E-03 
S    13    1.000000
   3.74100000E+05    4.35066000E-06 
   5.60500000E+04    3.37140000E-05 
   1.27600000E+04    1.77674000E-04 
   3.61500000E+03    7.41116000E-04 
   1.18300000E+03    2.64591000E-03 
   4.28800000E+02    8.07487000E-03 
   1.67800000E+02    2.12276000E-02 
   6.94700000E+01    4.38323000E-02 
   2.98400000E+01    6.12716000E-02 
   1.27200000E+01   -3.61510000E-03 
   5.24400000E+00   -2.04510000E-01 
   2.21900000E+00   -3.81871000E-01 
   3.49000000E-01    7.14147000E-01 
S    1    1.000000
   7.76700000E-01    1.00000000E+00 
S    1    1.000000
   1.32200000E-01    1.00000000E+00 
S    1    1.000000
   4.97000000E-02    1.00000000E+00 
P    7    1.000000
   5.74400000E+02    2.42264000E-03 
   1.35800000E+02    1.92796000E-02 
   4.31900000E+01    8.85401000E-02 
   1.58700000E+01    2.54654000E-01 
   6.20800000E+00    4.33984000E-01 
   2.48300000E+00    3.54953000E-01 
   3.22900000E-01   -5.02977000E-03 
P    7    1.000000
   5.74400000E+02   -6.20102000E-04 
   1.35800000E+02   -4.93882000E-03 
   4.31900000E+01   -2.32647000E-02 
   1.58700000E+01   -6.85195000E-02 
   6.20800000E+00   -1.23896000E-01 
   2.48300000E+00   -9.69499000E-02 
   3.22900000E-01    5.69394000E-01 
P    1    1.000000
   8.68800000E-01    1.00000000E+00 
P    1    1.000000
   1.09800000E-01    1.00000000E+00 
P    1    1.000000
   3.51000000E-02    1.00000000E+00 
D    1    1.000000
   8.19000000E-01    1.00000000E+00 
D    1    1.000000
   2.69000000E-01    1.00000000E+00 
D    1    1.000000
   1.01000000E-01    1.00000000E+00 
F    1    1.000000
   5.57000000E-01    1.00000000E+00 
F    1    1.000000
   2.18000000E-01    1.00000000E+00 

2    0
S    3    1.000000
   3.38700000E+01    6.06800000E-03 
   5.09500000E+00    4.53080000E-02 
   1.15900000E+00    2.02822000E-01 
S    1    1.000000
   3.25800000E-01    1.00000000E+00 
S    1    1.000000
   1.02700000E-01    1.00000000E+00 
S    1    1.000000
   2.52600000E-02    1.00000000E+00 
P    1    1.000000
   1.40700000E+00    1.00000000E+00 
P    1    1.000000
   3.88000000E-01    1.00000000E+00 
P    1    1.000000
   1.02000000E-01    1.00000000E+00 
D    1    1.000000
   1.05700000E+00    1.00000000E+00 
D    1    1.000000
   2.47000000E-01    1.00000000E+00 

3    0
S    13    1.000000
   2.54900000E+05    6.25101000E-05 
   3.81900000E+04    4.85553000E-04 
   8.69000000E+03    2.54516000E-03 
   2.46200000E+03    1.05866000E-02 
   8.04800000E+02    3.68787000E-02 
   2.91300000E+02    1.07479000E-01 
   1.13600000E+02    2.47936000E-01 
   4.67500000E+01    3.90927000E-01 
   1.98200000E+01    3.02026000E-01 
   7.70800000E+00    5.59236000E-02 
   3.34000000E+00   -4.02406000E-03 
   1.40200000E+00    2.58030000E-03 
   2.07000000E-01    6.07930000E-04 
S    13    1.000000
   2.54900000E+05   -1.66370000E-05 
   3.81900000E+04   -1.29310000E-04 
   8.69000000E+03   -6.78828000E-04 
   2.46200000E+03   -2.84117000E-03 
   8.04800000E+02   -1.00551000E-02 
   2.91300000E+02   -3.05774000E-02 
   1.13600000E+02   -7.77256000E-02 
   4.67500000E+01   -1.54236000E-01 
   1.98200000E+01   -1.80368000E-01 
   7.70800000E+00    7.98218000E-02 
   3.34000000E+00    5.47441000E-01 
   1.40200000E+00    4.80119000E-01 
   2.07000000E-01   -1.06996000E-02 
S    13    1.000000
   2.54900000E+05    4.26257000E-06 
   3.81900000E+04    3.31062000E-05 
   8.69000000E+03    1.74015000E-04 
   2.46200000E+03    7.27574000E-04 
   8.04800000E+02    2.58333000E-03 
   2.91300000E+02    7.86354000E-03 
   1.13600000E+02    2.02155000E-02 
   4.67500000E+01    4.07320000E-02 
   1.98200000E+01    4.99358000E-02 
   7.70800000E+00   -2.49396000E-02 
   3.34000000E+00   -1.90350000E-01 
   1.40200000E+00   -3.18350000E-01 
   2.07000000E-01    6.81180000E-01 
S    1    1.000000
   4.38700000E-01    1.00000000E+00 
S    1    1.000000
   7.94400000E-02    1.00000000E+00 
S    1    1.000000
   3.30000000E-02    1.00000000E+00 
P    7    1.000000
   4.81500000E+02    1.92045000E-03 
   1.13900000E+02    1.53552000E-02 
   3.62300000E+01    7.13991000E-02 
   1.33400000E+01    2.13052000E-01 
   5.25200000E+00    3.90354000E-01 
   2.12000000E+00    3.93721000E-01 
   2.52800000E-01    3.95630000E-03 
P    7    1.000000
   4.81500000E+02   -4.05220000E-04 
   1.13900000E+02   -3.35896000E-03 
   3.62300000E+01   -1.52860000E-02 
   1.33400000E+01   -4.89218000E-02 
   5.25200000E+00   -8.55008000E-02 
   2.12000000E+00   -1.12137000E-01 
   2.52800000E-01    5.51919000E-01 
P    1    1.000000
   8.56100000E-01    1.00000000E+00 
P    1    1.000000
   7.88900000E-02    1.00000000E+00 
P    1    1.000000
   2.37000000E-02    1.00000000E+00 
D    1    1.000000
   4.81000000E-01    1.00000000E+00 
D    1    1.000000
   1.59000000E-01    1.00000000E+00 
D    1    1.000000
   5.56000000E-02    1.00000000E+00 
F    1    1.000000
   3.36000000E-01    1.00000000E+00 
F    1    1.000000
   1.25000000E-01    1.00000000E+00 

In SF calculations, you are not interested in the transitions between the reference state (Ms=1) and the target SF states (singlets and triplets with Ms=0), but in the transitions within the target state manifold. To properly deploy this analysis, you should use cc_state_to_opt keyword to specify relative to which state you want to compute the transitions. The input below shows how to compute NTOs for methylene relative to the 1A1 state.

$comment
SF-CCSD libwa analysis for EOM-SF states
Methylene, 3B2 reference
$end

$molecule
0 3
C
H 1 rCH
H 1 rCH 2 aHCH

rCH = 1.083
aHCH = 145.
$end

$rem
jobtype SP single point
method eom-ccsd
BASIS 6-31G*
N_FROZEN_CORE 1
SF_STATES [2,0,0,2]
cc_trans_prop = true ! Compute transition properties
cc_state_to_opt = [4,1] ! relative to the lowest state in the B2 irrep (1A1 state)
cc_eom_prop = true
CC_CONVERGENCE 11
EOM_DAVIDSON_CONVERGENCE 8
! Below are libwa keywords
state_analysis = true
molden_format = true
nto_pairs = 4
pop_mulliken = true
$end

1 Like