EOM-EA-CCSD Calculations Being Cut Off

Hello,
I am new to using QChem, and I am trying to determine the electron affinity for my molecule using EOM-EA-CCSD. My calculation eventually seems to cut off without completion or an error message.

Here is my input:
$molecule
0 1
O 0.19169 2.69183 -0.00262
N -2.22701 0.68129 0.0072
N 1.47845 0.79195 -0.0038
N 0.6961 -1.43894 0.00734
N -1.73324 -1.50733 -0.00346
N 2.97808 -1.00785 -0.06406
C -0.85644 0.50449 0.00696
C -0.5295 -0.85295 -0.00112
C 0.21102 1.47074 0.00275
C 1.67617 -0.56574 -0.00189
C -2.71766 -0.53196 0.00114
H 2.27063 1.42042 -0.07318
H -3.76847 -0.78596 -0.00039
H 3.07721 -2.00136 0.09445
H 3.69742 -0.43969 0.36088
H -1.85856 -2.50929 -0.01037
$end

$rem
jobtype SP
METHOD EOM-CCSD
BASIS 6-311+G(2df,p)
EA_STATES 0
GUI = 2
CC_SYMMETRY false
cc_memory 20000
mem_total 25000
$end

And the lines that my output ends on are:
End of double precision
SCF energy = -539.56972345
MP2 energy = -541.55084856
CCSD correlation energy = -1.98284531
CCSD total energy = -541.55256876

CCSD T1^2 = 0.0294 T2^2 = 0.6027 Leading amplitudes:

Amplitude Orbitals with energies
0.0365 32 (A) A → 51 (A) A
-0.5494 0.1447
0.0365 32 (A) B → 51 (A) B
-0.5494 0.1447
-0.0297 31 (A) A → 48 (A) A
-0.5979 0.1249
-0.0297 31 (A) B → 48 (A) B
-0.5979 0.1249

Amplitude Orbitals with energies
-0.0265 39 (A) A 39 (A) B → 51 (A) A 51 (A) B
-0.3015 -0.3015 0.1447 0.1447
0.0265 39 (A) A 39 (A) B → 51 (A) B 51 (A) A
-0.3015 -0.3015 0.1447 0.1447
0.0265 39 (A) B 39 (A) A → 51 (A) A 51 (A) B
-0.3015 -0.3015 0.1447 0.1447
-0.0265 39 (A) B 39 (A) A → 51 (A) B 51 (A) A
-0.3015 -0.3015 0.1447 0.1447

Computing CCSD intermediates for later calculations in double precision

I would appreciate any help with this!
Thank you.

Hello cmobo,

Thank you for bringing this up. Could you provide the output file or inform us which version you are using?

Kuan-Yu

Hello Kuan-Yu,

Thank you for responding. I am using QChem version 5.3.
Here is my output:


Running Job 1 of 1 guanine_test_0.input
qchem guanine_test_0.input_108903.0 /ssd/christian//qchem108903/ 0
/home/apps/qchem5.3/exe/qcprog.exe_s guanine_test_0.input_108903.0 /ssd/christian//qchem108903/
Welcome to Q-Chem
A Quantum Leap Into The Future Of Chemistry

Q-Chem 5.3, Q-Chem, Inc., Pleasanton, CA (2020)

Yihan Shao, Zhengting Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit,
J. Kussmann, A. W. Lange, A. Behn, Jia Deng, Xintian Feng, D. Ghosh,
M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, T. Kus, A. Landau,
Jie Liu, E. I. Proynov, R. M. Richard, R. P. Steele, E. J. Sundstrom,
H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Alam, B. Albrecht,
A. Aldossary, E. Alguire, S. A. Baeppler, D. Barton, Z. Benda,
Y. A. Bernard, E. J. Berquist, K. B. Bravaya, H. Burton, K. Carter-Fenk,
D. Casanova, Chun-Min Chang, Yunqing Chen, A. Chien, K. D. Closser,
M. P. Coons, S. Coriani, S. Dasgupta, A. L. Dempwolff, M. Diedenhofen,
Hainam Do, R. G. Edgar, Po-Tung Fang, S. Faraji, S. Fatehi,
Qingguo Feng, J. Fosso-Tande, J. Gayvert, Qinghui Ge, A. Ghysels,
G. Gidofalvi, J. Gomes, J. Gonthier, S. Gulania, A. Gunina, D. Hait,
M. W. D. Hanson-Heine, S. Hammes-Schiffer, P. H. P. Harbach,
A. W. Hauser, M. F. Herbst, J. E. Herr, E. G. Hohenstein, Z. C. Holden,
S. Houck, Kerwin Hui, B. C. Huynh, M. Ivanov, T.-C. Jagau, Hyunjun Ji,
B. Kaduk, K. Khistyaev, Jaehoon Kim, P. Klunzinger, K. Koh,
D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, A. Kunitsa,
Ka Un Lao, A. Laurent, K. V. Lawler, Joonho Lee, D. Lefrancois,
S. Lehtola, D. S. Levine, Yi-Pei Li, You-Sheng Lin, Fenglai Liu,
Kuan-Yu Liu, E. Livshits, M. Loipersberger, A. Luenser, P. Manohar,
E. Mansoor, S. F. Manzer, Shan-Ping Mao, Yuezhi Mao, N. Mardirossian,
A. V. Marenich, T. Markovich, L. A. Martinez-Martinez, S. A. Maurer,
N. J. Mayhall, S. C. McKenzie, J.-M. Mewes, P. Morgante, A. F. Morrison,
J. W. Mullinax, K. Nanda, T. S. Nguyen-Beck, R. Olivares-Amaya,
K. J. Oosterbaan, J. A. Parkhill, S. K. Paul, F. Pavosevic, Zheng Pei,
T. M. Perrine, F. Plasser, P. Pokhilko, S. Prager, A. Prociuk,
E. Ramos, B. Rana, D. R. Rehn, F. Rob, E. Rossomme, M. Scheurer,
M. Schneider, N. Sergueev, S. M. Sharada, S. Sharma, W. Skomorowski,
D. W. Small, T. Stauch, C. J. Stein, T. Stein, Yu-Chuan Su,
S. P. Veccham, Zhen Tao, A. J. W. Thom, A. Tkatchenko, T. Tsuchimochi,
N. M. Tubman, L. Vogt, M. L. Vidal, O. Vydrov, M. A. Watson, J. Wenzel,
M. de Wergifosse, T. A. Wesolowski, A. White, J. Witte, A. Yamada,
Jun Yang, K. Yao, S. Yeganeh, S. R. Yost, Zhi-Qiang You, A. Zech,
Igor Ying Zhang, Xing Zhang, Yan Zhao, Ying Zhu, B. R. Brooks,
G. K. L. Chan, C. J. Cramer, M. S. Gordon, W. J. Hehre, A. Klamt,
M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Aspuru-Guzik, R. Baer,
A. T. Bell, N. A. Besley, Jeng-Da Chai, A. E. DePrince, III,
R. A. DiStasio Jr., A. Dreuw, B. D. Dunietz, T. R. Furlani,
Chao-Ping Hsu, Yousung Jung, Jing Kong, D. S. Lambrecht, WanZhen Liang,
C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik,
T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, M. Head-Gordon

Contributors to earlier versions of Q-Chem not listed above:
R. D. Adamson, B. Austin, J. Baker, G. J. O. Beran, K. Brandhorst,
S. T. Brown, E. F. C. Byrd, A. K. Chakraborty, C.-L. Cheng,
Siu Hung Chien, D. M. Chipman, D. L. Crittenden, H. Dachsel,
R. J. Doerksen, A. D. Dutoi, L. Fusti-Molnar, W. A. Goddard III,
A. Golubeva-Zadorozhnaya, S. R. Gwaltney, G. Hawkins, A. Heyden,
S. Hirata, G. Kedziora, F. J. Keil, C. Kelley, Jihan Kim, R. A. King,
R. Z. Khaliullin, P. P. Korambath, W. Kurlancheek, A. M. Lee, M. S. Lee,
S. V. Levchenko, Ching Yeh Lin, D. Liotard, R. C. Lochan, I. Lotan,
P. E. Maslen, N. Nair, D. P. O’Neill, D. Neuhauser, E. Neuscamman,
C. M. Oana, R. Olson, B. Peters, R. Peverati, P. A. Pieniazek,
Y. M. Rhee, J. Ritchie, M. A. Rohrdanz, E. Rosta, N. J. Russ,
H. F. Schaefer III, N. E. Schultz, N. Shenvi, A. C. Simmonett, A. Sodt,
D. Stuck, K. S. Thanthiriwatte, V. Vanovschi, Tao Wang, A. Warshel,
C. F. Williams, Q. Wu, X. Xu, W. Zhang

Please cite Q-Chem as follows:
Y. Shao et al., Mol. Phys. 113, 184-215 (2015)
DOI: 10.1080/00268976.2014.952696

Q-Chem 5.3.0 for Intel X86 EM64T Linux

Parts of Q-Chem use Armadillo 9.800.1 (Horizon Scraper).
http://arma.sourceforge.net/

Q-Chem begins on Tue Nov 1 03:06:58 2022

Host:
0

 Scratch files written to /ssd/christian//qchem108903//

Jun1620 |scratch|qcdevops|jenkins|workspace|build_RNUM 6363
Processing $rem in /home/apps/qchem5.3/config/preferences:
Processing $rem in /home/christian/.qchemrc:
Core orbitals will be frozen

Checking the input file for inconsistencies… …done.


User input:

$molecule
0 1
O 0.19169 2.69183 -0.00262
N -2.22701 0.68129 0.0072
N 1.47845 0.79195 -0.0038
N 0.6961 -1.43894 0.00734
N -1.73324 -1.50733 -0.00346
N 2.97808 -1.00785 -0.06406
C -0.85644 0.50449 0.00696
C -0.5295 -0.85295 -0.00112
C 0.21102 1.47074 0.00275
C 1.67617 -0.56574 -0.00189
C -2.71766 -0.53196 0.00114
H 2.27063 1.42042 -0.07318
H -3.76847 -0.78596 -0.00039
H 3.07721 -2.00136 0.09445
H 3.69742 -0.43969 0.36088
H -1.85856 -2.50929 -0.01037
$end

$rem
jobtype SP
METHOD EOM-CCSD
BASIS 6-311+G(2df,p)
EA_STATES 0
GUI = 2
CC_SYMMETRY false
cc_memory 80000
mem_total 85000
$end



         Standard Nuclear Orientation (Angstroms)
I     Atom           X                Y                Z

1      O       0.1916909173    -2.6918289569     0.0026178858
2      N      -2.2270092905    -0.6812891966    -0.0072000064
3      N       1.4784507229    -0.7919488260     0.0037991979
4      N       0.6961004922     1.4389411030    -0.0073388250
5      N      -1.7332395127     1.5073308452     0.0034616932
6      N       2.9780805500     1.0078512783     0.0640603876
7      C      -0.8564393086    -0.5044890564    -0.0069601223
8      C      -0.5294994461     0.8529509705     0.0011209279
9      C       0.2110207912    -1.4707389505    -0.0027511172

10 C 1.6761705834 0.5657411958 0.0018902729
11 C -2.7176594137 0.5319607481 -0.0011389188
12 H 2.2706308005 -1.4204188017 0.0731785322
13 H -3.7684694394 0.7859606392 0.0003914893
14 H 3.0772104180 2.0013614183 -0.0944488171
15 H 3.6974205273 0.4396917002 -0.3608802149
16 H -1.8585596141 2.5092908267 0.0103725382

Molecular Point Group C1 NOp = 1
Largest Abelian Subgroup C1 NOp = 1
Nuclear Repulsion Energy = 593.61890797 hartrees
There are 39 alpha and 39 beta electrons
Requested basis set is 6-311+G(2df,p)
There are 108 shells and 404 basis functions
Total memory of 85000 MB is distributed as follows:
MEM_STATIC is set to 192 MB
QALLOC/CCMAN JOB total memory use is 84808 MB
Warning: actual memory use might exceed 85000 MB

Total QAlloc Memory Limit 85000 MB
Mega-Array Size 188 MB
MEM_STATIC part 192 MB
A cutoff of 1.0D-14 yielded 5212 shell pairs
There are 75070 function pairs ( 96788 Cartesian)
Smallest overlap matrix eigenvalue = 5.07E-06

Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01

Standard Electronic Orientation quadrupole field applied
Nucleus-field energy = 0.0000000188 hartrees
Guess from superposition of atomic densities
Warning: Energy on first SCF cycle will be non-variational
SAD guess density has 78.000000 electrons


General SCF calculation program by
Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
Bang C. Huynh

Hartree-Fock
A restricted SCF calculation will be
performed using DIIS
SCF converges when DIIS error is below 1.0e-08

Cycle Energy DIIS error

1    -544.1073653272      3.12e-02
2    -539.3303862982      3.30e-03
3    -539.4749192570      2.41e-03
4    -539.5641049707      4.29e-04
5    -539.5690145835      1.34e-04
6    -539.5695560312      4.98e-05
7    -539.5696809068      2.29e-05
8    -539.5697169860      1.07e-05
9    -539.5697227328      3.22e-06

10 -539.5697233574 1.28e-06
11 -539.5697234291 5.51e-07
12 -539.5697234484 1.99e-07
13 -539.5697234505 6.30e-08
14 -539.5697234508 2.22e-08
15 -539.5697234508 7.53e-09 Convergence criterion met

SCF time: CPU 742.30s wall 743.00s
SCF energy in the final basis set = -539.5697234508
Total energy in the final basis set = -539.5697234508


CCMAN2: suite of methods based on coupled cluster
and equation of motion theories.

Components:

  • libvmm-1.3-trunk
    by Evgeny Epifanovsky, Ilya Kaliman.
  • libtensor-2.5-trunk
    by Evgeny Epifanovsky, Michael Wormit, Dmitry Zuev, Sam Manzer,
    Ilya Kaliman.
  • libcc-2.5-trunk
    by Evgeny Epifanovsky, Arik Landau, Tomasz Kus, Kirill Khistyaev,
    Dmitry Zuev, Prashant Manohar, Xintian Feng, Anna Krylov,
    Matthew Goldey, Alec White, Thomas Jagau, Kaushik Nanda,
    Anastasia Gunina, Alexander Kunitsa, Joonho Lee.

CCMAN original authors:
Anna I. Krylov, C. David Sherrill, Steven R. Gwaltney,
Edward F. C. Byrd (2000)
Sergey V. Levchenko, Lyudmila V. Slipchenko, Tao Wang,
Ana-Maria C. Cristian (2003)
Piotr A. Pieniazek, C. Melania Oana, Evgeny Epifanovsky (2007)
Prashant Manohar (2009)


Allocating and initializing 80000MB of RAM…
Calculation will run on 1 core.

Occupation and symmetry of molecular orbitals

Point group: C1 (1 irreducible representation).

                       A     All

All molecular orbitals:

  • Alpha 404 404
  • Beta 404 404

Alpha orbitals:

  • Frozen occupied 11 11
  • Active occupied 28 28
  • Active virtual 365 365
  • Frozen virtual 0 0

Beta orbitals:

  • Frozen occupied 11 11
  • Active occupied 28 28
  • Active virtual 365 365
  • Frozen virtual 0 0

Import integrals: CPU 0.00 s wall 0.00 s

Import integrals: CPU 1548.25 s wall 1550.74 s

MP2 amplitudes: CPU 5.72 s wall 5.79 s

Running a double precision version
CCSD T amplitudes will be solved using DIIS.

       Start     Size      MaxIter   EConv     TConv
       3         7         100       1.00e-06  1.00e-04

       Energy (a.u.)   Ediff      Tdiff       Comment

      -541.55084856
 1    -541.48690009   6.39e-02   1.25e+00     Step took 41.11.
 2    -541.55272233   6.58e-02   1.74e-01
 3    -541.54454381   8.18e-03   6.71e-02
 4    -541.55057713   6.03e-03   3.06e-02     Switched to DIIS steps.
 5    -541.55230234   1.73e-03   1.20e-02
 6    -541.55254144   2.39e-04   4.64e-03
 7    -541.55255747   1.60e-05   1.55e-03
 8    -541.55255998   2.51e-06   7.59e-04
 9    -541.55256734   7.36e-06   3.49e-04
10    -541.55256699   3.50e-07   1.37e-04
11    -541.55256911   2.12e-06   7.44e-05
12    -541.55256876   3.48e-07   3.20e-05

      -541.55256876                           CCSD T converged.

End of double precision
SCF energy = -539.56972345
MP2 energy = -541.55084856
CCSD correlation energy = -1.98284531
CCSD total energy = -541.55256876

CCSD T1^2 = 0.0294 T2^2 = 0.6027 Leading amplitudes:

Amplitude Orbitals with energies
0.0365 32 (A) A → 51 (A) A
-0.5494 0.1447
0.0365 32 (A) B → 51 (A) B
-0.5494 0.1447
-0.0297 31 (A) A → 48 (A) A
-0.5979 0.1249
-0.0297 31 (A) B → 48 (A) B
-0.5979 0.1249

Amplitude Orbitals with energies
-0.0265 39 (A) A 39 (A) B → 51 (A) A 51 (A) B
-0.3015 -0.3015 0.1447 0.1447
0.0265 39 (A) A 39 (A) B → 51 (A) B 51 (A) A
-0.3015 -0.3015 0.1447 0.1447
0.0265 39 (A) B 39 (A) A → 51 (A) A 51 (A) B
-0.3015 -0.3015 0.1447 0.1447
-0.0265 39 (A) B 39 (A) A → 51 (A) B 51 (A) A
-0.3015 -0.3015 0.1447 0.1447

Computing CCSD intermediates for later calculations in double precision


Thank you,
Christian

Hello Christian,

Thank you for the information. Unfotunate, we are not able to reproduce the intrruption you experienced. The job finished successfully in 4 hrs using 32 cores. Does the job run on a cluster with time or memory limit? If yes, does it hit the limit for either time or memory? If not, could you show the result if you type ulimit -a from command line?