EOM-EA Frequency Analysis Stalling

Hello,

I am running frequency analysis jobs on the molecule YCC using EOM-CC with triple-zeta basis sets. I have experienced multiple (though not all) of these jobs stalling after completing one single-point calculation when I use EOM-EA. The job does not end nor throw any errors but simple does not continue. I have not experienced this issue when I use EOM-IP to do the same analysis. Does anyone have any insight into what’s going on? Thanks in advance for the support!

EOM-CC frequencies are not computed analytically and will go through the numerical finite difference procedure that evaluates the frequencies using a series of force jobs. Can you provide more details about where precisely it stops and whether it completes at least one force calculation? Will a standalone JOBTYPE=FORCE or JOBTYPE=OPT complete or also stop in the middle? Posting your input and output will help further diagnose the problem.

Sure, the jobs stop immediately after calculating energies and do not complete any gradient calculations. I have not tried a standalone JOBTYPE=FORCE, but a JOBTYPE=OPT will complete without problems. Below I’ve pasted my input and output for a job where I try to compute the frequencies of a low-lying excited state of YCC (the 1st B1 state). Thank you very much for your help in diagnosing this!

INPUT

$molecule
1 1
Y
C  1 2.216990
C  2 1.280216 1 73.218162
$end

$rem
    BASIS GEN
    ECP GEN
    PURECART 111
    METHOD EOM-CCSD
    JOBTYPE FREQ
    EA_STATES [3]
    MAX_SCF_CYCLES 250
    MEM_TOTAL 7000
    SYM_IGNORE TRUE
$end

$comment
Y:  aug-cc-pVTZ-PP
C:  aug-cc-pVTZ
$end

$basis
Y     0
S   9   1.00
    121.5550000              0.0003990
     13.3508000             -0.0373740
      8.3430400              0.2104080
      5.2126200             -0.1742590
      2.8482200             -0.4490590
      0.7360920              0.7515460
      0.3395250              0.5039130
      0.0850000              0.0381900
      0.0457190             -0.0168190
S   9   1.00
    121.5550000             -0.0001380
     13.3508000              0.0126550
      8.3430400             -0.0725770
      5.2126200              0.0689460
      2.8482200              0.1410760
      0.7360920             -0.3097690
      0.3395250             -0.3640910
      0.0850000              0.3089760
      0.0457190              0.6183900
S   9   1.00
    121.5550000             -0.0000250
     13.3508000              0.0025120
      8.3430400             -0.0493070
      5.2126200             -0.0036710
      2.8482200              0.3721140
      0.7360920             -1.0040470
      0.3395250             -0.0462620
      0.0850000              2.7996160
      0.0457190             -1.8967450
S   9   1.00
    121.5550000              0.0003360
     13.3508000             -0.0302260
      8.3430400              0.0575900
      5.2126200             -0.2202050
      2.8482200              0.8124860
      0.7360920             -2.9159010
      0.3395250              2.9601310
      0.0850000              0.3098150
      0.0457190             -3.0151070
S   1   1.00
      0.0217750              1.0000000
S   1   1.00
      0.0104000              1.0000000
P   8   1.00
     15.7057000             -0.0010080
      9.8143400              0.0184510
      3.9515200             -0.1533130
      1.0287300              0.3882870
      0.5203410              0.4715490
      0.2628060              0.2442250
      0.1191270              0.0374550
      0.0532630              0.0009170
P   8   1.00
     15.7057000             -0.0001460
      9.8143400             -0.0045380
      3.9515200              0.0466130
      1.0287300             -0.1376680
      0.5203410             -0.1888270
      0.2628060             -0.1161280
      0.1191270              0.3231850
      0.0532630              0.6065240
P   8   1.00
     15.7057000             -0.0006490
      9.8143400              0.0126010
      3.9515200             -0.1098480
      1.0287300              0.3192010
      0.5203410              0.8044380
      0.2628060             -0.8756500
      0.1191270             -1.0192500
      0.0532630              0.9413270
P   8   1.00
     15.7057000              0.0008090
      9.8143400             -0.0150420
      3.9515200              0.1388090
      1.0287300             -0.6034190
      0.5203410             -0.8228890
      0.2628060              2.6576020
      0.1191270             -1.8092190
      0.0532630             -0.4174460
P   1   1.00
      0.0233840              1.0000000
P   1   1.00
      0.0103000              1.0000000
D   7   1.00
     15.8535000              0.0009920
      5.0818300             -0.0052340
      1.4509500              0.0867890
      0.6892770              0.2297090
      0.3133420              0.3256070
      0.1383830              0.3432860
      0.0595550              0.2503880
D   7   1.00
     15.8535000             -0.0010910
      5.0818300              0.0056570
      1.4509500             -0.1099010
      0.6892770             -0.2902090
      0.3133420             -0.3566240
      0.1383830              0.0229490
      0.0595550              0.5623060
D   7   1.00
     15.8535000              0.0013370
      5.0818300             -0.0069910
      1.4509500              0.1521840
      0.6892770              0.4617290
      0.3133420              0.1555670
      0.1383830             -0.9016730
      0.0595550             -0.0617510
D   1   1.00
      0.0245030              1.0000000
D   1   1.00
      0.0101000              1.0000000
F   1   1.00
      0.4893000              1.0000000
F   1   1.00
      0.1248000              1.0000000
F   1   1.00
      0.0353000              1.0000000
G   1   1.00
      0.2769000              1.0000000
G   1   1.00
      0.0764000              1.0000000
****
C     0
S   10   1.00
      8.236000D+03           5.310000D-04
      1.235000D+03           4.108000D-03
      2.808000D+02           2.108700D-02
      7.927000D+01           8.185300D-02
      2.559000D+01           2.348170D-01
      8.997000D+00           4.344010D-01
      3.319000D+00           3.461290D-01
      9.059000D-01           3.937800D-02
      3.643000D-01          -8.983000D-03
      1.285000D-01           2.385000D-03
S   10   1.00
      8.236000D+03          -1.130000D-04
      1.235000D+03          -8.780000D-04
      2.808000D+02          -4.540000D-03
      7.927000D+01          -1.813300D-02
      2.559000D+01          -5.576000D-02
      8.997000D+00          -1.268950D-01
      3.319000D+00          -1.703520D-01
      9.059000D-01           1.403820D-01
      3.643000D-01           5.986840D-01
      1.285000D-01           3.953890D-01
S   1   1.00
      9.059000D-01           1.000000D+00
S   1   1.00
      1.285000D-01           1.000000D+00
S   1   1.00
      0.0440200              1.0000000
P   5   1.00
      1.871000D+01           1.403100D-02
      4.133000D+00           8.686600D-02
      1.200000D+00           2.902160D-01
      3.827000D-01           5.010080D-01
      1.209000D-01           3.434060D-01
P   1   1.00
      3.827000D-01           1.000000D+00
P   1   1.00
      1.209000D-01           1.000000D+00
P   1   1.00
      0.0356900              1.0000000
D   1   1.00
      1.097000D+00           1.000000D+00
D   1   1.00
      3.180000D-01           1.000000D+00
D   1   1.00
      0.1000000              1.0000000
F   1   1.00
      7.610000D-01           1.0000000
F   1   1.00
      0.2680000              1.0000000
****
$end


$ecp
Y     0
Y-ECP     4     28
g potential
  1
2      1.0000000              0.0000000
s-g potential
  2
2      7.85827500           135.13497400
2      3.38212800            15.41163200
p-g potential
  4
2      6.84979100            29.25143700
2      6.71009200            58.50836300
2      3.04215900             3.78024300
2      2.93733000             7.67654700
d-g potential
  4
2      5.41631500            11.84991100
2      5.33341600            17.77810300
2      1.97621200             2.06238300
2      1.96111100             3.07565000
f-g potential
  2
2      5.02859000            -6.92807800
2      5.00558200            -9.15509900
****
$end

OUTPUT

--------------------------------------------------------------
 ----------------------------------------------------------------
             Standard Nuclear Orientation (Angstroms)
    I     Atom           X                Y                Z
 ----------------------------------------------------------------
    1      Y       0.0000000000     0.0000000000     0.0000000000
    2      C       0.0000000000     0.0000000000     2.2169900000
    3      C       1.2256929687     0.0000000000     1.8473553788
 ----------------------------------------------------------------
 Nuclear Repulsion Energy =          46.38790745 hartrees
 There are       11 alpha and       11 beta electrons
 Requested basis set is non-standard
 There are 50 shells and 180 basis functions
 Total memory of 7000 MB is distributed as follows: 
   MEM_STATIC is set to 192 MB
   QALLOC/CCMAN JOB total memory use is  6808 MB
 Warning: actual memory use might exceed 7000 MB

 Total QAlloc Memory Limit   7000 MB
 Mega-Array Size       188 MB
 MEM_STATIC part       192 MB

                       Distance Matrix (Angstroms)
             Y (  1)   C (  2)
   C (  2)  2.216990
   C (  3)  2.216990  1.280216
 
 A cutoff of  1.0D-14 yielded   1275 shell pairs
 There are     16661 function pairs (     25932 Cartesian)
 Requested basis set is non-standard
 Compound shells will be simplified
 There are 50 shells and 180 basis functions
 A cutoff of  1.0D-14 yielded   1275 shell pairs
 There are     16661 function pairs (     25932 Cartesian)
 Smallest overlap matrix eigenvalue = 4.03E-05
 Guess MOs from core Hamiltonian diagonalization

 -----------------------------------------------------------------------
  General SCF calculation program by
  Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
  David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
  Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
  Bang C. Huynh
 -----------------------------------------------------------------------
 Hartree-Fock
 using 128 threads for integral computing
 -------------------------------------------------------
 OpenMP Integral computing Module                
 Release: version 1.0, May 2013, Q-Chem Inc. Pittsburgh 
 -------------------------------------------------------
 A unrestricted SCF calculation will be
 performed using DIIS
 SCF converges when DIIS error is below 1.0e-08
 ---------------------------------------
  Cycle       Energy         DIIS error
 ---------------------------------------
    1     -97.5641242480      3.33e-02  
    2     -93.4770083827      1.77e-02  
    3     -96.9773593042      2.34e-02  
    4    -111.6144368763      8.71e-03  
    5    -112.6356768980      4.54e-03  
    6    -113.1528031745      9.39e-04  
    7    -113.1714055216      2.11e-04  
    8    -113.1728220234      1.10e-04  
    9    -113.1730888523      1.65e-05  
   10    -113.1731094351      6.64e-06  
   11    -113.1731142877      2.48e-06  
   12    -113.1731150771      8.06e-07  
   13    -113.1731151437      2.68e-07  
   14    -113.1731151556      1.04e-07  
   15    -113.1731151567      3.49e-08  
   16    -113.1731151568      1.19e-08  
   17    -113.1731151569      6.86e-09  Convergence criterion met
 ---------------------------------------
 SCF time:   CPU 2053.77s  wall 80.00s 
<S^2> =          0.000000000
 SCF   energy in the final basis set =     -113.1731151569
 Total energy in the final basis set =     -113.1731151569


 ------------------------------------------------------------------------------

   CCMAN2: suite of methods based on coupled cluster
           and equation of motion theories.

   Components:
   * libvmm-1.3-trunk
     by Evgeny Epifanovsky, Ilya Kaliman.
   * libtensor-2.5-trunk
     by Evgeny Epifanovsky, Michael Wormit, Dmitry Zuev, Sam Manzer, 
        Ilya Kaliman.
   * libcc-2.5-trunk
     by Evgeny Epifanovsky, Arik Landau, Tomasz Kus, Kirill Khistyaev, 
        Dmitry Zuev, Prashant Manohar, Xintian Feng, Anna Krylov, 
        Matthew Goldey, Alec White, Thomas Jagau, Kaushik Nanda, 
        Anastasia Gunina, Alexander Kunitsa, Joonho Lee.

   CCMAN original authors:
   Anna I. Krylov, C. David Sherrill, Steven R. Gwaltney,
   Edward F. C. Byrd (2000)
   Sergey V. Levchenko, Lyudmila V. Slipchenko, Tao Wang,
   Ana-Maria C. Cristian (2003)
   Piotr A. Pieniazek, C. Melania Oana, Evgeny Epifanovsky (2007)
   Prashant Manohar (2009)

 ------------------------------------------------------------------------------


 Allocating and initializing 6808MB of RAM...
 Calculation will run on 128 cores.

 
 Alpha MOs, Unrestricted
 -- Occupied --                  
-11.377 -11.375  -2.519  -1.596  -1.590  -1.588  -1.141  -0.675
  1 A     2 A     3 A     4 A     5 A     6 A     7 A     8 A                  
 -0.576  -0.541  -0.518
  9 A    10 A    11 A                                                          
 -- Virtual --                   
 -0.218  -0.165  -0.163  -0.157  -0.154  -0.144  -0.098  -0.083
 12 A    13 A    14 A    15 A    16 A    17 A    18 A    19 A                  
 -0.081  -0.062  -0.056  -0.056  -0.053  -0.053  -0.047  -0.043
 20 A    21 A    22 A    23 A    24 A    25 A    26 A    27 A                  
 -0.036  -0.015  -0.014  -0.014  -0.013  -0.013  -0.011   0.002
 28 A    29 A    30 A    31 A    32 A    33 A    34 A    35 A                  
  0.006   0.006   0.009   0.009   0.021   0.024   0.026   0.038
 36 A    37 A    38 A    39 A    40 A    41 A    42 A    43 A                  
  0.041   0.052   0.062   0.069   0.069   0.091   0.096   0.105
 44 A    45 A    46 A    47 A    48 A    49 A    50 A    51 A                  
  0.130   0.143   0.144   0.146   0.151   0.164   0.166   0.200
 52 A    53 A    54 A    55 A    56 A    57 A    58 A    59 A                  
  0.207   0.213   0.214   0.214   0.216   0.223   0.225   0.226
 60 A    61 A    62 A    63 A    64 A    65 A    66 A    67 A                  
  0.230   0.252   0.260   0.270   0.273   0.311   0.330   0.333
 68 A    69 A    70 A    71 A    72 A    73 A    74 A    75 A                  
  0.355   0.357   0.367   0.368   0.383   0.384   0.399   0.414
 76 A    77 A    78 A    79 A    80 A    81 A    82 A    83 A                  
  0.434   0.478   0.488   0.490   0.517   0.531   0.642   0.665
 84 A    85 A    86 A    87 A    88 A    89 A    90 A    91 A                  
  0.673   0.709   0.716   0.765   0.776   0.787   0.818   0.819
 92 A    93 A    94 A    95 A    96 A    97 A    98 A    99 A                  
  0.828   0.920   0.935   0.981   0.981   1.001   1.001   1.020
100 A   101 A   102 A   103 A   104 A   105 A   106 A   107 A                  
  1.041   1.066   1.067   1.109   1.133   1.155   1.155   1.158
108 A   109 A   110 A   111 A   112 A   113 A   114 A   115 A                  
  1.188   1.191   1.191   1.213   1.223   1.278   1.285   1.292
116 A   117 A   118 A   119 A   120 A   121 A   122 A   123 A                  
  1.309   1.317   1.327   1.334   1.380   1.419   1.428   1.440
124 A   125 A   126 A   127 A   128 A   129 A   130 A   131 A                  
  1.486   1.516   1.534   1.538   1.566   1.588   1.679   1.690
132 A   133 A   134 A   135 A   136 A   137 A   138 A   139 A                  
  1.710   1.719   1.777   1.814   1.934   1.994   2.142   2.417
140 A   141 A   142 A   143 A   144 A   145 A   146 A   147 A                  
  2.467   2.872   3.076   3.078   3.134   3.154   3.169   3.233
148 A   149 A   150 A   151 A   152 A   153 A   154 A   155 A                  
  3.272   3.278   3.342   3.452   3.570   3.584   3.593   3.641
156 A   157 A   158 A   159 A   160 A   161 A   162 A   163 A                  
  3.644   3.665   3.669   3.725   3.748   3.886   3.961   3.998
164 A   165 A   166 A   167 A   168 A   169 A   170 A   171 A                  
  4.054   4.102   4.819   4.854   4.867   4.980   8.712  15.373
172 A   173 A   174 A   175 A   176 A   177 A   178 A   179 A                  
 25.517
180 A                                                                          
 
 Beta MOs, Unrestricted
 -- Occupied --                  
-11.377 -11.375  -2.519  -1.596  -1.590  -1.588  -1.141  -0.675
  1 A     2 A     3 A     4 A     5 A     6 A     7 A     8 A                  
 -0.576  -0.541  -0.518
  9 A    10 A    11 A                                                          
 -- Virtual --                   
 -0.218  -0.165  -0.163  -0.157  -0.154  -0.144  -0.098  -0.083
 12 A    13 A    14 A    15 A    16 A    17 A    18 A    19 A                  
 -0.081  -0.062  -0.056  -0.056  -0.053  -0.053  -0.047  -0.043
 20 A    21 A    22 A    23 A    24 A    25 A    26 A    27 A                  
 -0.036  -0.015  -0.014  -0.014  -0.013  -0.013  -0.011   0.002
 28 A    29 A    30 A    31 A    32 A    33 A    34 A    35 A                  
  0.006   0.006   0.009   0.009   0.021   0.024   0.026   0.038
 36 A    37 A    38 A    39 A    40 A    41 A    42 A    43 A                  
  0.041   0.052   0.062   0.069   0.069   0.091   0.096   0.105
 44 A    45 A    46 A    47 A    48 A    49 A    50 A    51 A                  
  0.130   0.143   0.144   0.146   0.151   0.164   0.166   0.200
 52 A    53 A    54 A    55 A    56 A    57 A    58 A    59 A                  
  0.207   0.213   0.214   0.214   0.216   0.223   0.225   0.226
 60 A    61 A    62 A    63 A    64 A    65 A    66 A    67 A                  
  0.230   0.252   0.260   0.270   0.273   0.311   0.330   0.333
 68 A    69 A    70 A    71 A    72 A    73 A    74 A    75 A                  
  0.355   0.357   0.367   0.368   0.383   0.384   0.399   0.414
 76 A    77 A    78 A    79 A    80 A    81 A    82 A    83 A                  
  0.434   0.478   0.488   0.490   0.517   0.531   0.642   0.665
 84 A    85 A    86 A    87 A    88 A    89 A    90 A    91 A                  
  0.673   0.709   0.716   0.765   0.776   0.787   0.818   0.819
 92 A    93 A    94 A    95 A    96 A    97 A    98 A    99 A                  
  0.828   0.920   0.935   0.981   0.981   1.001   1.001   1.020
100 A   101 A   102 A   103 A   104 A   105 A   106 A   107 A                  
  1.041   1.066   1.067   1.109   1.133   1.155   1.155   1.158
108 A   109 A   110 A   111 A   112 A   113 A   114 A   115 A                  
  1.188   1.191   1.191   1.213   1.223   1.278   1.285   1.292
116 A   117 A   118 A   119 A   120 A   121 A   122 A   123 A                  
  1.309   1.317   1.327   1.334   1.380   1.419   1.428   1.440
124 A   125 A   126 A   127 A   128 A   129 A   130 A   131 A                  
  1.486   1.516   1.534   1.538   1.566   1.588   1.679   1.690
132 A   133 A   134 A   135 A   136 A   137 A   138 A   139 A                  
  1.710   1.719   1.777   1.814   1.934   1.994   2.142   2.417
140 A   141 A   142 A   143 A   144 A   145 A   146 A   147 A                  
  2.467   2.872   3.076   3.078   3.134   3.154   3.169   3.233
148 A   149 A   150 A   151 A   152 A   153 A   154 A   155 A                  
  3.272   3.278   3.342   3.452   3.570   3.584   3.593   3.641
156 A   157 A   158 A   159 A   160 A   161 A   162 A   163 A                  
  3.644   3.665   3.669   3.725   3.748   3.886   3.961   3.998
164 A   165 A   166 A   167 A   168 A   169 A   170 A   171 A                  
  4.054   4.102   4.819   4.854   4.867   4.980   8.712  15.373
172 A   173 A   174 A   175 A   176 A   177 A   178 A   179 A                  
 25.517
180 A                                                                          

 Occupation and symmetry of molecular orbitals

 Point group: C1 (1 irreducible representation).

                           A     All 
 -------------------------------------
 All molecular orbitals:
  - Alpha                  180   180 
  - Beta                   180   180 
 -------------------------------------
 Alpha orbitals:
  - Frozen occupied        6     6   
  - Active occupied        5     5   
  - Active virtual         169   169 
  - Frozen virtual         0     0   
 -------------------------------------
 Beta orbitals:
  - Frozen occupied        6     6   
  - Active occupied        5     5   
  - Active virtual         169   169 
  - Frozen virtual         0     0   
 -------------------------------------

 Import integrals:   CPU 0.00 s  wall 0.00 s

 Import integrals:   CPU 5470.38 s  wall 624.40 s

 MP2 amplitudes:   CPU 2.01 s  wall 1.54 s

Running a double precision version
           CCSD T amplitudes will be solved using DIIS.

           Start     Size      MaxIter   EConv     TConv     
           3         7         100       1.00e-07  1.00e-05  
 ------------------------------------------------------------------------------
           Energy (a.u.)   Ediff      Tdiff       Comment
 ------------------------------------------------------------------------------
          -113.51930433                           
     1    -113.49499041   2.43e-02   6.14e-01     Step took 19.34.
     2    -113.51566446   2.07e-02   9.06e-02     
     3    -113.51069493   4.97e-03   4.42e-02     
     4    -113.51365604   2.96e-03   5.20e-02     Switched to DIIS steps.
     5    -113.51495522   1.30e-03   1.25e-02     
     6    -113.51534270   3.87e-04   7.79e-03     
     7    -113.51543775   9.50e-05   3.57e-03     
     8    -113.51547800   4.03e-05   1.64e-03     
     9    -113.51551110   3.31e-05   8.36e-04     
    10    -113.51550651   4.59e-06   3.14e-04     
    11    -113.51550659   8.08e-08   1.52e-04     
    12    -113.51550783   1.23e-06   8.63e-05     
    13    -113.51550505   2.77e-06   5.35e-05     
    14    -113.51550593   8.82e-07   2.22e-05     
    15    -113.51550562   3.13e-07   1.34e-05     
    16    -113.51550574   1.21e-07   6.59e-06     
    17    -113.51550564   1.07e-07   3.84e-06     
    18    -113.51550551   1.24e-07   1.99e-06     
    19    -113.51550546   4.97e-08   1.39e-06     
 ------------------------------------------------------------------------------
          -113.51550546                           CCSD T converged.

End of double precision
 SCF energy                 = -113.17311516
 MP2 energy                 = -113.51930433
 CCSD correlation energy    =   -0.34239031
 CCSD total energy          = -113.51550546

 CCSD  T1^2 = 0.0336  T2^2 = 0.1774  Leading amplitudes:

 Amplitude    Orbitals with energies
 -0.0715       11 (A) A                  ->    12 (A) A                   
              -0.5176                         -0.2176                     
 -0.0715       11 (A) B                  ->    12 (A) B                   
              -0.5176                         -0.2176                     
  0.0567       11 (A) A                  ->    17 (A) A                   
              -0.5176                         -0.1442                     
  0.0567       11 (A) B                  ->    17 (A) B                   
              -0.5176                         -0.1442                     

 Amplitude    Orbitals with energies
 -0.0452       11 (A) A      11 (A) B    ->    18 (A) A      18 (A) B     
              -0.5176       -0.5176           -0.0982       -0.0982       
  0.0452       11 (A) A      11 (A) B    ->    18 (A) B      18 (A) A     
              -0.5176       -0.5176           -0.0982       -0.0982       
  0.0452       11 (A) B      11 (A) A    ->    18 (A) A      18 (A) B     
              -0.5176       -0.5176           -0.0982       -0.0982       
 -0.0452       11 (A) B      11 (A) A    ->    18 (A) B      18 (A) A     
              -0.5176       -0.5176           -0.0982       -0.0982       

 Computing CCSD intermediates for later calculations in double precision
 Finished.

Running a double precision version
           CCSD Lambda amplitudes will be solved using DIIS.
           Start     Size      MaxIter   EConv     LConv     
           3         7         100       1.00e-07  1.00e-05  
 ------------------------------------------------------------------------------
            Enorm      Ldiff       Comment
 ------------------------------------------------------------------------------
     1     7.82e-02   4.90e-02     
     2     3.63e-02   1.05e-02     
     3     2.13e-02   5.02e-04     
     4     8.28e-03   3.96e-03     Switched to DIIS steps.
     5     3.57e-03   2.03e-03     
     6     1.98e-03   1.11e-03     
     7     1.08e-03   7.37e-04     
     8     4.51e-04   3.76e-04     
     9     2.08e-04   1.36e-04     
    10     1.11e-04   4.19e-05     
    11     5.62e-05   9.84e-06     
    12     2.58e-05   3.15e-06     
    13     1.56e-05   8.42e-08     
    14     9.16e-06   1.24e-06     
    15     4.56e-06   4.23e-07     
    16     2.61e-06   5.04e-07     
    17     1.34e-06   1.60e-07     
    18     8.39e-07   1.52e-07     
    19     4.78e-07   1.20e-07     
    20     2.40e-07   1.13e-07     
    21     1.33e-07   4.78e-08     
    22     7.91e-08   3.12e-08     
 ------------------------------------------------------------------------------
                                   CCSD Lambda converged.

 Computing density matrices in double precision...
           Orbital response amplitudes will be solved using DIIS.
           Start     Size      MaxIter   EConv     LConv     
           3         7         100       1.00e-06  1.00e-06  
 ------------------------------------------------------------------------------
            Enorm      Ldiff       Comment
 ------------------------------------------------------------------------------
     1     1.65e-01   7.64e-02     
     2     2.39e-01   8.64e-03     
     3     4.01e-01   1.67e-01     
     4     1.04e-02   2.41e-01     Switched to DIIS steps.
     5     2.27e-03   1.85e-03     
     6     7.45e-04   1.75e-04     
     7     1.56e-04   1.36e-04     
     8     5.27e-05   1.82e-05     
     9     1.42e-05   1.23e-05     
    10     3.46e-06   4.89e-06     
    11     1.43e-06   4.92e-07     
    12     1.39e-07   4.93e-07     
 ------------------------------------------------------------------------------
                                   Orbital response converged.

 Computing density matrices... Done.
 CCSD calculation:   CPU 95496.56 s  wall 85484.46 s

 EOMEE-CCSD calculation:   CPU 13.64 s  wall 173.83 s

        Solving for EOMEA-CCSD/MP2 A transitions.

Running a double precision version
      EOMEA-CCSD/MP2 right amplitudes will be solved using Davidson.
        Amplitudes will be solved using standard  algorithm.
     Hard-coded thresholds: 
     LinDepThresh=1.00e-15  NormThresh=1.00e-06  ReorthogonThresh=1.00e-02

      Roots     MaxVec    MaxIter   Precond   Conv      Shift    
      3         120       60        1         1.00e-06  0.00e+00  
 ------------------------------------------------------------------------------
      Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
 ------------------------------------------------------------------------------
      0    0      3     3.08e-02   -5.6142   -4.2125   -4.1824   
      1    0      6     2.47e-02   -5.9494   -4.6426   -4.5866   
      2    0      9     1.22e-03   -6.2806   -5.0615   -4.9078   
      3    0      12    1.88e-04   -6.3097   -5.1160   -4.9391   
      4    0      15    6.40e-05   -6.3119   -5.1247   -4.9413   
      5    0      18    1.01e-05   -6.3121   -5.1275   -4.9416   
      6    2      21    1.54e-06   -6.3127*  -5.1283   -4.9418*  
      7    3      22    5.03e-07   -6.3127*  -5.1282*  -4.9418*  

     Davidson procedure converged

 EOMEA transition 1/A
 Total energy = -113.74749375 a.u.  Excitation energy = -6.3127 eV.
 R1^2 = 0.9727  R2^2 = 0.0273  Res^2 = 8.88e-07
 Conv-d = yes

 Amplitude    Transitions between orbitals
 -0.9815       infty       ->    12 (A) B                   
 -0.0857       infty       ->    16 (A) B                   
  0.0261       infty       ->    20 (A) B                   
 -0.0188       infty       ->    32 (A) B                   

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               12      Vir  Beta       12 (A)     -0.2176
               16      Vir  Beta       16 (A)     -0.1543
               20      Vir  Beta       20 (A)     -0.0807
               32      Vir  Beta       32 (A)     -0.0131


 EOMEA transition 2/A
 Total energy = -113.70396432 a.u.  Excitation energy = -5.1282 eV.
 R1^2 = 0.9572  R2^2 = 0.0428  Res^2 = 3.65e-07
 Conv-d = yes

 Amplitude    Transitions between orbitals
  0.9591       infty       ->    13 (A) B                   
 -0.1853       infty       ->    18 (A) B                   
 -0.0280       infty       ->    30 (A) B                   
  0.0262       infty       ->    26 (A) B                   

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               13      Vir  Beta       13 (A)     -0.1646
               18      Vir  Beta       18 (A)     -0.0982
               26      Vir  Beta       26 (A)     -0.0474
               30      Vir  Beta       30 (A)     -0.0143


 EOMEA transition 3/A
 Total energy = -113.69711209 a.u.  Excitation energy = -4.9418 eV.
 R1^2 = 0.9671  R2^2 = 0.0329  Res^2 = 2.57e-07
 Conv-d = yes

 Amplitude    Transitions between orbitals
  0.9746       infty       ->    14 (A) B                   
 -0.1200       infty       ->    19 (A) B                   
  0.0352       infty       ->    27 (A) B                   
 -0.0308       infty       ->    31 (A) B                   

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               14      Vir  Beta       14 (A)     -0.1627
               19      Vir  Beta       19 (A)     -0.0828
               27      Vir  Beta       27 (A)     -0.0431
               31      Vir  Beta       31 (A)     -0.0138


 EOMEA-CCSD calculation:   CPU 22944.46 s  wall 26856.18 s

What kind of hardware is this? 128 cores and only 7GB memory looks strange, not necessarily optimal for coupled-cluster calculations. For example, the EOMEA-CCSD timing for my run looks like this (70x faster!):

 EOMEA-CCSD calculation:   CPU 1983.63 s  wall 370.69 s

Running this job on a workstation leads to expected results for me: the calculation proceeds to doing finite difference steps without getting stuck.

Your output terminates right at the point where the calculation goes into computing derivative integrals for the gradient, which require a bit of additional memory. If 7GB is total memory on this system, try using CC_BACKEND=XM and perhaps even reduce to MEM_TOTAL=4000.

Interesting! I’m running this on Caltech’s HPC. I tried what you suggested (CC_BACKEND=XM and MEM_TOTAL=4000) using only 16 cores, and the job is now no longer stalling, as well as running much quicker:

EOMEA-CCSD calculation: CPU 186.28 s wall 46.75 s

Thank you very much for your help in diagnosing this. I will now be able to complete these excited-state frequency runs, and in much less time than before.