The output of job 3 is too long to paste here (I run out of characters) so I’ll paste the key steps. Part 1: CCSD R and L calculation.
User input: 3 of 3
Welcome to Q-Chem
A Quantum Leap Into The Future Of Chemistry
Q-Chem 6.1 (devel), Q-Chem, Inc., Pleasanton, CA (2023)
E. Epifanovsky, A. T. B. Gilbert, Xintian Feng, Joonho Lee, Yuezhi Mao,
N. Mardirossian, P. Pokhilko, A. White, M. Wormit, M. P. Coons,
A. L. Dempwolff, Zhengting Gan, D. Hait, P. R. Horn, L. D. Jacobson,
I. Kaliman, J. Kussmann, A. W. Lange, Ka Un Lao, D. S. Levine, Jie Liu,
S. C. McKenzie, A. F. Morrison, K. D. Nanda, F. Plasser, D. R. Rehn,
M. L. Vidal, Zhi-Qiang You, Ying Zhu, B. Alam, B. Albrecht,
A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale, D. Barton,
K. Begam, A. Behn, N. Bellonzi, Y. A. Bernard, E. J. Berquist,
H. Burton, A. Carreras, K. Carter-Fenk, Mathew Chow, Romit Chakraborty,
Chandrima Chakravarty, Junhan Chen, A. D. Chien, K. D. Closser,
V. Cofer-Shabica, L. Cunha, S. Dasgupta, Jia Deng, M. de Wergifosse,
M. Diedenhofen, Hainam Do, S. Ehlert, Po-Tung Fang, S. Fatehi,
Qingguo Feng, T. Friedhoff, Thomas Froitzheim, B. Ganoe, J. Gayvert,
Qinghui Ge, G. Gidofalvi, M. Gimferrer, M. Goldey, Montgomery Gray,
J. Gomes, C. Gonzalez-Espinoza, S. Gulania, A. Gunina, J. A. Gyamfi,
M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, M. F. Herbst,
M. Hernandez Vera, M. Hodecker, Z. C. Holden, S. Houck, Xunkun Huang,
Kerwin Hui, B. C. Huynh, K. Ikeda, M. Ivanov, Hyunjun Ji, Zuxin Jin,
Hanjie Jiang, Subrata Jana, B. Kaduk, S. Kaehler, R. Kang,
K. Khistyaev, Jaehoon Kim, Yongbin Kim, P. Klunzinger, Z. Koczor-Benda,
Joong Hoon Koh, D. Kosenkov, Saikiran Kotaru, L. Koulias, T. Kowalczyk,
C. M. Krauter, K. Kue, A. Kunitsa, T. Kus, A. Landau, K. V. Lawler,
D. Lefrancois, S. Lehtola, Rain Li, Shaozhi Li, Yi-Pei Li,
Jiashu Liang, M. Liebenthal, Hung-Hsuan Lin, You-Sheng Lin, Fenglai Liu,
Kuan-Yu Liu, Xiao Liu, M. Loipersberger, A. Luenser, C. Malbon,
A. Manjanath, P. Manohar, E. Mansoor, S. F. Manzer, Shan-Ping Mao,
A. V. Marenich, T. Markovich, S. Mason, F. Matz, S. A. Maurer,
P. F. McLaughlin, M. F. S. J. Menger, J.-M. Mewes, S. A. Mewes,
P. Morgante, Mohammad Mostafanejad, J. W. Mullinax, K. J. Oosterbaan,
G. Paran, V. Parravicini, Alexander C. Paul, Suranjan K. Paul,
F. Pavosevic, Zheng Pei, S. Prager, E. I. Proynov, E. Ramos, B. Rana,
A. E. Rask, A. Rettig, R. M. Richard, F. Rob, E. Rossomme, T. Scheele,
M. Scheurer, M. Schneider, P. E. Schneider, Tim K. Schramm, N. Sergueev,
S. M. Sharada, M. Sharma, Hengyuan Shen, W. Skomorowski, D. W. Small,
C. J. Stein, Alistair J. Sterling, Yingli Su, Yu-Chuan Su,
E. J. Sundstrom, J. Talbot, Zhen Tao, J. Thirman, Hung-Yi Tsai,
T. Tsuchimochi, N. M. Tubman, C. Utku, S. P. Veccham, O. Vydrov,
J. Wenzel, Jonathan Wong, J. Witte, A. Yamada, Chou-Hsun Yang, Kun Yao,
S. Yeganeh, S. R. Yost, A. Zech, F. Zeller, Igor Ying Zhang,
Xing Zhang, Yu Zhang, D. Zuev, A. Aspuru-Guzik, A. T. Bell,
N. A. Besley, K. B. Bravaya, B. R. Brooks, D. Casanova, Jeng-Da Chai,
Hsing-Ta Chen, S. Coriani, C. J. Cramer, A. E. DePrince, III,
R. A. DiStasio Jr., A. Dreuw, B. D. Dunietz, T. R. Furlani,
W. A. Goddard III, S. Grimme, S. Hammes-Schiffer, T. Head-Gordon,
W. J. Hehre, Chao-Ping Hsu, T.-C. Jagau, Yousung Jung, A. Klamt,
Jing Kong, D. S. Lambrecht, Xiangyuan Li, WanZhen Liang, N. J. Mayhall,
C. W. McCurdy, J. B. Neaton, T. Neudecker, C. Ochsenfeld,
J. A. Parkhill, R. Peverati, V. A. Rassolov, Haisheng Ren, Yihan Shao,
L. V. Slipchenko, R. P. Steele, J. E. Subotnik, A. J. W. Thom,
A. Tkatchenko, D. G. Truhlar, T. Van Voorhis, Fan Wang,
T. A. Wesolowski, K. B. Whaley, H. L. Woodcock III, P. M. Zimmerman,
S. Faraji, P. M. W. Gill, M. Head-Gordon, J. M. Herbert, A. I. Krylov
Contributors to earlier versions of Q-Chem not listed above:
R. D. Adamson, B. Austin, R. Baer, J. Baker, G. J. O. Beran,
K. Brandhorst, S. T. Brown, E. F. C. Byrd, Arup K. Chakraborty,
G. K. L. Chan, Chun-Min Chang, Yunqing Chen, C.-L. Cheng,
Siu Hung Chien, D. M. Chipman, D. L. Crittenden, H. Dachsel,
R. J. Doerksen, A. D. Dutoi, R. G. Edgar, J. Fosso-Tande,
L. Fusti-Molnar, D. Ghosh, A. Ghysels, A. Golubeva-Zadorozhnaya,
J. Gonthier, M. S. Gordon, S. R. Gwaltney, G. Hawkins, J. E. Herr,
A. Heyden, S. Hirata, E. G. Hohenstein, G. Kedziora, F. J. Keil,
C. Kelley, Jihan Kim, R. A. King, R. Z. Khaliullin, P. P. Korambath,
W. Kurlancheek, A. Laurent, A. M. Lee, M. S. Lee, S. V. Levchenko,
Ching Yeh Lin, D. Liotard, E. Livshits, R. C. Lochan, I. Lotan,
L. A. Martinez-Martinez, P. E. Maslen, N. Nair, D. P. O'Neill,
D. Neuhauser, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, R. Olson,
T. M. Perrine, B. Peters, P. A. Pieniazek, A. Prociuk, Y. M. Rhee,
J. Ritchie, M. A. Rohrdanz, E. Rosta, N. J. Russ, H. F. Schaefer III,
M. W. Schmidt, N. E. Schultz, S. Sharma, N. Shenvi, C. D. Sherrill,
A. C. Simmonett, A. Sodt, T. Stein, D. Stuck, K. S. Thanthiriwatte,
V. Vanovschi, L. Vogt, Tao Wang, A. Warshel, M. A. Watson,
C. F. Williams, Q. Wu, X. Xu, Jun Yang, W. Zhang, Yan Zhao
Please cite Q-Chem as follows:
"Software for the frontiers of quantum chemistry:
An overview of developments in the Q-Chem 5 package"
J. Chem. Phys. 155, 084801 (2021)
https://doi.org/10.1063/5.0055522 (open access)
Q-Chem 6.1.1 for Intel X86 EM64T Linux
Parts of Q-Chem use Armadillo 9.900.5 (Nocturnal Misbehaviour).
http://arma.sourceforge.net/
Q-Chem begins on Thu Feb 15 08:06:53 2024
Host: n0044.mhg0
0
Scratch files written to /local/scratch/users/juanes/XAS-EOM-CCSD_FeCO2-Dinfh-S0.in20240215071341//
Processing $rem in /global/scratch/users/juanes/Trunk-w-SS-mixing/config/preferences:
Processing $rem in /global/home/users/juanes/.qchemrc:
Checking the input file for inconsistencies... ...done.
--------------------------------------------------------------
User input:
--------------------------------------------------------------
$comment
EOM-EE-CCSD calculation for core excited states.
$end
$molecule
0 1
Fe
C 1 rFeC
X 1 rFeC 2 a_90
C 1 rnFeC 3 a_90 2 d_0
O 1 rFeO 3 a_90 2 d_0
O 1 rnFeO 3 a_90 2 d_0
rnFeC = -1.848757
rFeC = 1.848757
rnFeO = -2.992985
rFeO = 2.992985
a_90 = 90.000000
d_0 = 0.000000
$end
$rem
METHOD EOM-CCSD
UNRESTRICTED FALSE
BASIS GEN
PURECART 11111
SYMMETRY FALSE
SYM_IGNORE TRUE
GEN_SCFMAN TRUE
SCF_GUESS READ
MAX_SCF_CYCLES 0
N_FC_CVS_INACTIVE 10
N_FROZEN_CORE FC
CVS_EE_SINGLETS [50]
CC_BACKEND XM
CC_SYMMETRY FALSE
CC_TRANS_PROP 1
IQMOL_FCHK TRUE
THRESH 14
MEM_TOTAL 32000
MEM_STATIC 1000
$end
$basis
C 0
cc-pVDZ
****
O 0
cc-pVDZ
****
Fe 0
cc-pVDZ
****
$end
$aux_basis
C 0
RIMP2-cc-pVDZ
****
O 0
RIMP2-cc-pVDZ
****
Fe 0
RIMP2-cc-pVDZ
****
$end
--------------------------------------------------------------
----------------------------------------------------------------
Standard Nuclear Orientation (Angstroms)
I Atom X Y Z
----------------------------------------------------------------
1 Fe 0.0000000000 0.0000000000 0.0000000000
2 C 0.0000000000 0.0000000000 1.8487570000
3 C -0.0000000000 0.0000000000 -1.8487570000
4 O 0.0000000000 0.0000000000 2.9929850000
5 O -0.0000000000 0.0000000000 -2.9929850000
----------------------------------------------------------------
Nuclear Repulsion Energy = 228.55618302 hartrees
There are 27 alpha and 27 beta electrons
Requested basis set is non-standard
There are 39 shells and 99 basis functions
Total memory of 32000 MB is distributed as follows:
MEM_STATIC is set to 1000 MB
QALLOC/CCMAN JOB total memory use is 31000 MB
Warning: actual memory use might exceed 32000 MB
Total QAlloc Memory Limit 32000 MB
Mega-Array Size 978 MB
MEM_STATIC part 1000 MB
Distance Matrix (Angstroms)
Fe( 1) C ( 2) C ( 3) O ( 4)
C ( 2) 1.848757
C ( 3) 1.848757 3.697514
O ( 4) 2.992985 1.144228 4.841742
O ( 5) 2.992985 4.841742 1.144228 5.985970
A cutoff of 1.0D-14 yielded 745 shell pairs
There are 4933 function pairs ( 6012 Cartesian)
Smallest overlap matrix eigenvalue = 5.30E-04
Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01
Standard Electronic Orientation quadrupole field applied
Nucleus-field energy = -0.0000000197 hartrees
Guess MOs from SCF MO coefficient file
-----------------------------------------------------------------------
General SCF calculation program by
Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
Bang C. Huynh
-----------------------------------------------------------------------
Hartree-Fock
Skip SCF calculation as requested
------------------------------------------------------------------------------
CCMAN2: suite of methods based on coupled cluster
and equation of motion theories.
Components:
* libvmm-1.3-trunk
by Evgeny Epifanovsky, Ilya Kaliman.
* libtensor-2.5-trunk
by Evgeny Epifanovsky, Michael Wormit, Dmitry Zuev, Sam Manzer,
Ilya Kaliman.
* libcc-2.5-trunk
by Evgeny Epifanovsky, Arik Landau, Tomasz Kus, Kirill Khistyaev,
Dmitry Zuev, Prashant Manohar, Xintian Feng, Anna Krylov,
Matthew Goldey, Alec White, Thomas Jagau, Kaushik Nanda,
Anastasia Gunina, Alexander Kunitsa, Joonho Lee.
CCMAN original authors:
Anna I. Krylov, C. David Sherrill, Steven R. Gwaltney,
Edward F. C. Byrd (2000)
Sergey V. Levchenko, Lyudmila V. Slipchenko, Tao Wang,
Ana-Maria C. Cristian (2003)
Piotr A. Pieniazek, C. Melania Oana, Evgeny Epifanovsky (2007)
Prashant Manohar (2009)
------------------------------------------------------------------------------
Calculation will run on 32 cores using libxm for tensor contractions
------------------------------------------------------------------------------
Libxm Tensor Library
Copyright (c) 2014-2018 Ilya Kaliman
https://github.com/ilyak/libxm
Reference: https://dx.doi.org/10.1002/jcc.24713
------------------------------------------------------------------------------
Occupation and symmetry of molecular orbitals
Point group: C1 (1 irreducible representation).
A All
-----------------------------------------------------
All molecular orbitals:
- Alpha 99 99
- Beta 99 99
-----------------------------------------------------
Alpha orbitals:
- Restricted/frozen occupied - layer 2 10 10
- Restricted/frozen occupied - layer 1 3 3
- Active occupied 14 14
- Active virtual 72 72
- Frozen virtual 0 0
-----------------------------------------------------
Beta orbitals:
- Restricted/frozen occupied - layer 2 10 10
- Restricted/frozen occupied - layer 1 3 3
- Active occupied 14 14
- Active virtual 72 72
- Frozen virtual 0 0
-----------------------------------------------------
***** Implemented option(s) for Restricted/frozen occupied layers 1 & 2:
(1) Frozen-core CVS active & frozen-core CVS inactive
Import integrals: CPU 0.01 s wall 0.00 s
Import integrals: CPU 107.61 s wall 5.67 s
MP2 CPU 5.33 s wall 0.23 s
Running a double precision version
CCSD T amplitudes will be solved using DIIS.
Start Size MaxIter EConv TConv
3 7 100 1.00e-06 1.00e-04
------------------------------------------------------------------------------
Energy (a.u.) Ediff Tdiff Comment
------------------------------------------------------------------------------
-1490.06653437
1 -1489.69176353 3.75e-01 5.24e-01
2 -1489.98231070 2.91e-01 4.43e-02
3 -1489.74784598 2.34e-01 3.80e-02
4 -1489.85714642 1.09e-01 6.89e-01 Switched to DIIS steps.
5 -1489.86845656 1.13e-02 7.21e-02
6 -1489.87779907 9.34e-03 2.23e-02
7 -1489.87744805 3.51e-04 7.93e-03
8 -1489.87607367 1.37e-03 9.79e-03
9 -1489.87613449 6.08e-05 1.80e-03
10 -1489.87645608 3.22e-04 1.15e-03
11 -1489.87636108 9.50e-05 4.61e-04
12 -1489.87644686 8.58e-05 5.59e-04
13 -1489.87647764 3.08e-05 6.87e-04
14 -1489.87648875 1.11e-05 7.37e-04
15 -1489.87651694 2.82e-05 3.72e-04
16 -1489.87650892 8.02e-06 1.72e-04
17 -1489.87650715 1.77e-06 1.28e-04
18 -1489.87651393 6.78e-06 5.03e-05
19 -1489.87650781 6.12e-06 3.27e-05
20 -1489.87651238 4.57e-06 2.62e-05
21 -1489.87651094 1.44e-06 1.10e-05
22 -1489.87651129 3.50e-07 5.17e-06
------------------------------------------------------------------------------
-1489.87651129 CCSD T converged.
End of double precision
SCF energy = -1488.90363916
MP2 energy = -1490.08789443
CCSD correlation energy = -0.97287213
CCSD total energy = -1489.87651129
CCSD T1^2 = 0.0075 T2^2 = 0.3389 Leading amplitudes:
Amplitude Orbitals with energies
0.0344 24 (A) A -> 38 (A) A
-0.5505 0.2995
0.0344 24 (A) B -> 38 (A) B
-0.5505 0.2995
0.0341 26 (A) A -> 35 (A) A
-0.4170 0.1483
0.0341 26 (A) B -> 35 (A) B
-0.4170 0.1483
0.0341 25 (A) A -> 34 (A) A
-0.4170 0.1483
0.0341 25 (A) B -> 34 (A) B
-0.4170 0.1483
Amplitude Orbitals with energies
-0.0813 27 (A) A 27 (A) B -> 36 (A) A 36 (A) B
-0.3379 -0.3379 0.1587 0.1587
0.0813 27 (A) A 27 (A) B -> 36 (A) B 36 (A) A
-0.3379 -0.3379 0.1587 0.1587
0.0813 27 (A) B 27 (A) A -> 36 (A) A 36 (A) B
-0.3379 -0.3379 0.1587 0.1587
-0.0813 27 (A) B 27 (A) A -> 36 (A) B 36 (A) A
-0.3379 -0.3379 0.1587 0.1587
Computing CCSD intermediates for later calculations in double precision
Finished.
Running a double precision version
CCSD Lambda amplitudes will be solved using DIIS.
Start Size MaxIter EConv LConv
3 7 100 1.00e-06 1.00e-04
------------------------------------------------------------------------------
Enorm Ldiff Comment
------------------------------------------------------------------------------
1 9.16e-02 3.93e-02
2 3.89e-02 1.33e-02
3 2.22e-02 4.43e-03
4 1.51e-02 6.30e-03 Switched to DIIS steps.
5 4.99e-03 5.12e-04
6 2.46e-03 5.21e-04
7 1.30e-03 1.19e-05
8 7.02e-04 1.91e-04
9 3.52e-04 7.02e-06
10 2.38e-04 3.63e-05
11 1.61e-04 3.02e-05
12 1.08e-04 3.59e-05
13 8.31e-05 3.44e-05
14 7.00e-05 1.84e-05
15 5.70e-05 2.27e-05
16 4.13e-05 2.51e-05
17 2.48e-05 2.89e-05
18 1.49e-05 9.49e-06
19 8.19e-06 8.65e-06
20 4.35e-06 1.29e-06
21 2.82e-06 7.18e-07
22 1.96e-06 1.05e-07
23 1.33e-06 1.69e-07
24 9.01e-07 2.10e-07
------------------------------------------------------------------------------
CCSD Lambda converged.
CCSD CPU 3063.53 s wall 135.78 s