fc-CVS EOM-CCSD near-zero transition

I’m running fc-CVS EOM-CCSD calculation on a closed-shell system. I get the following as the lowest transition.

 CVS-EOMEE transition 1/A
 Total energy = -1489.87639523 a.u.  Excitation energy = 0.0032 eV.
 R0^2 = 0.0000  R1^2 = 0.0000  R2_CCVV^2 = 0.0000  R2_COVV^2 = 0.0000  Res^2 = 4.78e-04
 Conv-d = no

 Amplitude    Transitions between orbitals


 CVS-EOMEE transition 2/A

The root appears after the following message during the Davidson iterations:

Found complex roots...
      8    1      120   1.34e-02   52.2079*  54.2314   54.2314   55.9785   55.9785   56.3392   56.4396   56.5086   56.8229   58.4125   58.8025   58.8025   58.9370   59.0455   59.1386   59.3151   59.3151   60.2701   60.4577   60.4577   60.5256   60.5256   60.6037   60.7168   60.8829   60.9117   60.9329   60.9344   61.0378   61.0378   61.7141   61.7141   61.7187   63.4444   63.4444   63.5867   63.6302   63.6446   63.7771   63.7771   63.9569   64.0944   64.0944   64.3083   65.0575   65.0575   65.9135   67.6209   67.6209   67.9815
Vector=39 Small norm=0.0000!
Root= 39 Small norm=0.0000!
      9    5      98    5.54e-02   0.2979   52.2090*  54.2290   54.2290   55.9835*  55.9835*  56.3635   56.4645   56.5303   56.8535   57.9185   58.7818   58.7818   58.9467   59.0245   59.1493   59.3077   59.3077   59.5495   60.4446   60.4446   60.4644*  60.4644*  60.5153   60.5698   61.1297   61.1358   61.1676   61.1924   61.1931   61.3078   61.3078   61.8286   61.8565   61.8565   63.5691   63.5691   63.5774   63.6419   63.7429   64.1634   64.2969   64.2969   64.5172   65.1899   65.1899   67.7748   67.7748   68.1712   87.7856

What exactly is this? What can I do about it?

Seems like something went very wrong in the calculation and the algorithm converged to some garbage. This may happen when calculation was not set up correctly or when guess was very bad, or when too many states were requested. If you share input and output, I may be able to help to figure out what went wrong and fix the input accordingly.

Thank you, Prof. Krylov. Below you’ll find an explanation of the three sequential inputs. I’ll post the input / output afterwards.

  1. SCF with stability analysis to find the lowest minima
  2. RI-BCC2 calculation to produce better orbitals. (CCSD with SCF orbitals suffers from massive T amplitudes).
  3. fc-CVS EOM-CCSD calculation targeting the Fe M_{2, 3}-edge

A piece of information that could be relevant is that there are low-lying triplet and quintet states for this molecule. I have, however, followed the same protocol for other molecules with low-lying triplets as well, without a problem…

Input:

$comment
  Plain old SCF on the ground state.
$end

$molecule
  0   1
  Fe
  C   1 rFeC
  X   1 rFeC  2 a_90
  C   1 rnFeC 3 a_90 2 d_0 
  O   1 rFeO  3 a_90 2 d_0          
  O   1 rnFeO 3 a_90 2 d_0          

  rnFeC = -1.848757
  rFeC  =  1.848757
  rnFeO = -2.992985
  rFeO  =  2.992985
  a_90  = 90.000000
  d_0   =  0.000000
$end

$rem
  METHOD               HF
  UNRESTRICTED         FALSE
  BASIS                GEN
  PURECART             11111
  INTEGRAL_SYMMETRY    FALSE
  POINT_GROUP_SYMMETRY FALSE
  GEN_SCFMAN           TRUE
  SCF_ALGORITHM        DIIS_GDM
  SCF_CONVERGENCE      8
  MAX_SCF_CYCLES       500
  THRESH               14
  INTERNAL_STABILITY   TRUE
  INTERNAL_STABILITY_ITER 250
  MEM_TOTAL            32000
  MEM_STATIC           1000
$end

$basis
C    0
cc-pVDZ
****
O    0
cc-pVDZ
****
Fe    0
cc-pVDZ
****
$end

@@@

$comment
  RI-BCC2 to produce better orbitals.
$end

$molecule
  0   1
  Fe
  C   1 rFeC
  X   1 rFeC  2 a_90
  C   1 rnFeC 3 a_90 2 d_0 
  O   1 rFeO  3 a_90 2 d_0          
  O   1 rnFeO 3 a_90 2 d_0          

  rnFeC = -1.848757
  rFeC  =  1.848757
  rnFeO = -2.992985
  rFeO  =  2.992985
  a_90  = 90.000000
  d_0   =  0.000000
$end

$rem
  METHOD               HF
  UNRESTRICTED         FALSE
  BASIS                GEN
  AUX_BASIS            GEN
  PURECART             11111
  SYMMETRY             FALSE
  SYM_IGNORE           TRUE
  GEN_SCFMAN_FINAL     TRUE
  SCF_GUESS            READ
  SCF_ALGORITHM        DIIS
  SCF_CONVERGENCE      8
  MAX_SCF_CYCLES       200
  DO_BCC2              3
  REGULARIZED_O2       2
  REG_VARIABLE         1200
  MEM_TOTAL            32000
  MEM_STATIC           1000
  THRESH               14
$end

$basis
C    0
cc-pVDZ
****
O    0
cc-pVDZ
****
Fe    0
cc-pVDZ
****
$end

$aux_basis
C    0
RIMP2-cc-pVDZ
****
O    0
RIMP2-cc-pVDZ
****
Fe    0
RIMP2-cc-pVDZ
****
$end

@@@

$comment
  EOM-EE-CCSD calculation for core excited states.
$end

$molecule
  0   1
  Fe
  C   1 rFeC
  X   1 rFeC  2 a_90
  C   1 rnFeC 3 a_90 2 d_0 
  O   1 rFeO  3 a_90 2 d_0          
  O   1 rnFeO 3 a_90 2 d_0          

  rnFeC = -1.848757
  rFeC  =  1.848757
  rnFeO = -2.992985
  rFeO  =  2.992985
  a_90  = 90.000000
  d_0   =  0.000000
$end

$rem
  METHOD               EOM-CCSD
  UNRESTRICTED         FALSE
  BASIS                GEN
  PURECART             11111
  SYMMETRY             FALSE
  SYM_IGNORE           TRUE
  GEN_SCFMAN           TRUE
  SCF_GUESS            READ
  MAX_SCF_CYCLES       0
  N_FC_CVS_INACTIVE    10
  N_FROZEN_CORE        FC
  CVS_EE_SINGLETS      [50]
  CC_BACKEND           XM
  CC_SYMMETRY          FALSE
  CC_TRANS_PROP        1
  IQMOL_FCHK           TRUE
  THRESH               14
  MEM_TOTAL            32000
  MEM_STATIC           1000
$end

$basis
C    0
cc-pVDZ
****
O    0
cc-pVDZ
****
Fe    0
cc-pVDZ
****
$end

Output 1. SCF on closed-shell singlet.

                  Welcome to Q-Chem
     A Quantum Leap Into The Future Of Chemistry


 Q-Chem 6.1 (devel), Q-Chem, Inc., Pleasanton, CA (2023)

 E. Epifanovsky,  A. T. B. Gilbert,  Xintian Feng,  Joonho Lee,  Yuezhi Mao,  
 N. Mardirossian,  P. Pokhilko,  A. White,  M. Wormit,  M. P. Coons,  
 A. L. Dempwolff,  Zhengting Gan,  D. Hait,  P. R. Horn,  L. D. Jacobson,  
 I. Kaliman,  J. Kussmann,  A. W. Lange,  Ka Un Lao,  D. S. Levine,  Jie Liu,  
 S. C. McKenzie,  A. F. Morrison,  K. D. Nanda,  F. Plasser,  D. R. Rehn,  
 M. L. Vidal,  Zhi-Qiang You,  Ying Zhu,  B. Alam,  B. Albrecht,  
 A. Aldossary,  E. Alguire,  J. H. Andersen,  V. Athavale,  D. Barton,  
 K. Begam,  A. Behn,  N. Bellonzi,  Y. A. Bernard,  E. J. Berquist,  
 H. Burton,  A. Carreras,  K. Carter-Fenk,  Mathew Chow,  Romit Chakraborty,  
 Chandrima Chakravarty,  Junhan Chen,  A. D. Chien,  K. D. Closser,  
 V. Cofer-Shabica,  L. Cunha,  S. Dasgupta,  Jia Deng,  M. de Wergifosse,  
 M. Diedenhofen,  Hainam Do,  S. Ehlert,  Po-Tung Fang,  S. Fatehi,  
 Qingguo Feng,  T. Friedhoff,  Thomas Froitzheim,  B. Ganoe,  J. Gayvert,  
 Qinghui Ge,  G. Gidofalvi,  M. Gimferrer,  M. Goldey,  Montgomery Gray,  
 J. Gomes,  C. Gonzalez-Espinoza,  S. Gulania,  A. Gunina,  J. A. Gyamfi,  
 M. W. D. Hanson-Heine,  P. H. P. Harbach,  A. W. Hauser,  M. F. Herbst,  
 M. Hernandez Vera,  M. Hodecker,  Z. C. Holden,  S. Houck,  Xunkun Huang,  
 Kerwin Hui,  B. C. Huynh,  K. Ikeda,  M. Ivanov,  Hyunjun Ji,  Zuxin Jin,  
 Hanjie Jiang,  Subrata Jana,  B. Kaduk,  S. Kaehler,  R. Kang,  
 K. Khistyaev,  Jaehoon Kim,  Yongbin Kim,  P. Klunzinger,  Z. Koczor-Benda,  
 Joong Hoon Koh,  D. Kosenkov,  Saikiran Kotaru,  L. Koulias,  T. Kowalczyk,  
 C. M. Krauter,  K. Kue,  A. Kunitsa,  T. Kus,  A. Landau,  K. V. Lawler,  
 D. Lefrancois,  S. Lehtola,  Rain Li,  Shaozhi Li,  Yi-Pei Li,  
 Jiashu Liang,  M. Liebenthal,  Hung-Hsuan Lin,  You-Sheng Lin,  Fenglai Liu,  
 Kuan-Yu Liu,  Xiao Liu,  M. Loipersberger,  A. Luenser,  C. Malbon,  
 A. Manjanath,  P. Manohar,  E. Mansoor,  S. F. Manzer,  Shan-Ping Mao,  
 A. V. Marenich,  T. Markovich,  S. Mason,  F. Matz,  S. A. Maurer,  
 P. F. McLaughlin,  M. F. S. J. Menger,  J.-M. Mewes,  S. A. Mewes,  
 P. Morgante,  Mohammad Mostafanejad,  J. W. Mullinax,  K. J. Oosterbaan,  
 G. Paran,  V. Parravicini,  Alexander C. Paul,  Suranjan K. Paul,  
 F. Pavosevic,  Zheng Pei,  S. Prager,  E. I. Proynov,  E. Ramos,  B. Rana,  
 A. E. Rask,  A. Rettig,  R. M. Richard,  F. Rob,  E. Rossomme,  T. Scheele,  
 M. Scheurer,  M. Schneider,  P. E. Schneider,  Tim K. Schramm,  N. Sergueev,  
 S. M. Sharada,  M. Sharma,  Hengyuan Shen,  W. Skomorowski,  D. W. Small,  
 C. J. Stein,  Alistair J. Sterling,  Yingli Su,  Yu-Chuan Su,  
 E. J. Sundstrom,  J. Talbot,  Zhen Tao,  J. Thirman,  Hung-Yi Tsai,  
 T. Tsuchimochi,  N. M. Tubman,  C. Utku,  S. P. Veccham,  O. Vydrov,  
 J. Wenzel,  Jonathan Wong,  J. Witte,  A. Yamada,  Chou-Hsun Yang,  Kun Yao,  
 S. Yeganeh,  S. R. Yost,  A. Zech,  F. Zeller,  Igor Ying Zhang,  
 Xing Zhang,  Yu Zhang,  D. Zuev,  A. Aspuru-Guzik,  A. T. Bell,  
 N. A. Besley,  K. B. Bravaya,  B. R. Brooks,  D. Casanova,  Jeng-Da Chai,  
 Hsing-Ta Chen,  S. Coriani,  C. J. Cramer,  A. E. DePrince, III,  
 R. A. DiStasio Jr.,  A. Dreuw,  B. D. Dunietz,  T. R. Furlani,  
 W. A. Goddard III,  S. Grimme,  S. Hammes-Schiffer,  T. Head-Gordon,  
 W. J. Hehre,  Chao-Ping Hsu,  T.-C. Jagau,  Yousung Jung,  A. Klamt,  
 Jing Kong,  D. S. Lambrecht,  Xiangyuan Li,  WanZhen Liang,  N. J. Mayhall,  
 C. W. McCurdy,  J. B. Neaton,  T. Neudecker,  C. Ochsenfeld,  
 J. A. Parkhill,  R. Peverati,  V. A. Rassolov,  Haisheng Ren,  Yihan Shao,  
 L. V. Slipchenko,  R. P. Steele,  J. E. Subotnik,  A. J. W. Thom,  
 A. Tkatchenko,  D. G. Truhlar,  T. Van Voorhis,  Fan Wang,  
 T. A. Wesolowski,  K. B. Whaley,  H. L. Woodcock III,  P. M. Zimmerman,  
 S. Faraji,  P. M. W. Gill,  M. Head-Gordon,  J. M. Herbert,  A. I. Krylov

 Contributors to earlier versions of Q-Chem not listed above: 
 R. D. Adamson,  B. Austin,  R. Baer,  J. Baker,  G. J. O. Beran,  
 K. Brandhorst,  S. T. Brown,  E. F. C. Byrd,  Arup K. Chakraborty,  
 G. K. L. Chan,  Chun-Min Chang,  Yunqing Chen,  C.-L. Cheng,  
 Siu Hung Chien,  D. M. Chipman,  D. L. Crittenden,  H. Dachsel,  
 R. J. Doerksen,  A. D. Dutoi,  R. G. Edgar,  J. Fosso-Tande,  
 L. Fusti-Molnar,  D. Ghosh,  A. Ghysels,  A. Golubeva-Zadorozhnaya,  
 J. Gonthier,  M. S. Gordon,  S. R. Gwaltney,  G. Hawkins,  J. E. Herr,  
 A. Heyden,  S. Hirata,  E. G. Hohenstein,  G. Kedziora,  F. J. Keil,  
 C. Kelley,  Jihan Kim,  R. A. King,  R. Z. Khaliullin,  P. P. Korambath,  
 W. Kurlancheek,  A. Laurent,  A. M. Lee,  M. S. Lee,  S. V. Levchenko,  
 Ching Yeh Lin,  D. Liotard,  E. Livshits,  R. C. Lochan,  I. Lotan,  
 L. A. Martinez-Martinez,  P. E. Maslen,  N. Nair,  D. P. O'Neill,  
 D. Neuhauser,  E. Neuscamman,  C. M. Oana,  R. Olivares-Amaya,  R. Olson,  
 T. M. Perrine,  B. Peters,  P. A. Pieniazek,  A. Prociuk,  Y. M. Rhee,  
 J. Ritchie,  M. A. Rohrdanz,  E. Rosta,  N. J. Russ,  H. F. Schaefer III,  
 M. W. Schmidt,  N. E. Schultz,  S. Sharma,  N. Shenvi,  C. D. Sherrill,  
 A. C. Simmonett,  A. Sodt,  T. Stein,  D. Stuck,  K. S. Thanthiriwatte,  
 V. Vanovschi,  L. Vogt,  Tao Wang,  A. Warshel,  M. A. Watson,  
 C. F. Williams,  Q. Wu,  X. Xu,  Jun Yang,  W. Zhang,  Yan Zhao

   Please cite Q-Chem as follows:
  "Software for the frontiers of quantum chemistry:
   An overview of developments in the Q-Chem 5 package"
   J. Chem. Phys. 155, 084801 (2021)
   https://doi.org/10.1063/5.0055522 (open access)

 Q-Chem 6.1.1 for Intel X86 EM64T Linux

 Parts of Q-Chem use Armadillo 9.900.5 (Nocturnal Misbehaviour).
 http://arma.sourceforge.net/

 Q-Chem begins on Thu Feb 15 07:14:01 2024  

 Host: n0044.mhg0
0

     Scratch files written to /local/scratch/users/juanes/XAS-EOM-CCSD_FeCO2-Dinfh-S0.in20240215071341//
 Processing $rem in /global/scratch/users/juanes/Trunk-w-SS-mixing/config/preferences:
 Processing $rem in /global/home/users/juanes/.qchemrc:

 Checking the input file for inconsistencies... 	...done.

--------------------------------------------------------------
User input:
--------------------------------------------------------------
$comment
  Plain old SCF on the ground state.
$end

$molecule
  0   1
  Fe
  C   1 rFeC
  X   1 rFeC  2 a_90
  C   1 rnFeC 3 a_90 2 d_0 
  O   1 rFeO  3 a_90 2 d_0          
  O   1 rnFeO 3 a_90 2 d_0          

  rnFeC = -1.848757
  rFeC  =  1.848757
  rnFeO = -2.992985
  rFeO  =  2.992985
  a_90  = 90.000000
  d_0   =  0.000000
$end

$rem
  METHOD               HF
  UNRESTRICTED         FALSE
  BASIS                GEN
  PURECART             11111
  INTEGRAL_SYMMETRY    FALSE
  POINT_GROUP_SYMMETRY FALSE
  GEN_SCFMAN           TRUE
  SCF_ALGORITHM        DIIS_GDM
  SCF_CONVERGENCE      8
  MAX_SCF_CYCLES       500
  THRESH               14
  INTERNAL_STABILITY   TRUE
  INTERNAL_STABILITY_ITER 250
  MEM_TOTAL            32000
  MEM_STATIC           1000
$end

$basis
C    0
cc-pVDZ
****
O    0
cc-pVDZ
****
Fe    0
cc-pVDZ
****
$end

$aux_basis
C    0
RIMP2-cc-pVDZ
****
O    0
RIMP2-cc-pVDZ
****
Fe    0
RIMP2-cc-pVDZ
****
$end

--------------------------------------------------------------
 ----------------------------------------------------------------
             Standard Nuclear Orientation (Angstroms)
    I     Atom           X                Y                Z
 ----------------------------------------------------------------
    1      Fe      0.0000000000     0.0000000000     0.0000000000
    2      C       0.0000000000     0.0000000000     1.8487570000
    3      C      -0.0000000000     0.0000000000    -1.8487570000
    4      O       0.0000000000     0.0000000000     2.9929850000
    5      O      -0.0000000000     0.0000000000    -2.9929850000
 ----------------------------------------------------------------
 Nuclear Repulsion Energy =         228.55618302 hartrees
 There are       27 alpha and       27 beta electrons
 Requested basis set is non-standard
 There are 39 shells and 99 basis functions

 Total QAlloc Memory Limit  32000 MB
 Mega-Array Size       978 MB
 MEM_STATIC part      1000 MB


                       Distance Matrix (Angstroms)
             Fe(  1)   C (  2)   C (  3)   O (  4)
   C (  2)  1.848757
   C (  3)  1.848757  3.697514
   O (  4)  2.992985  1.144228  4.841742
   O (  5)  2.992985  4.841742  1.144228  5.985970
 
 A cutoff of  1.0D-14 yielded    745 shell pairs
 There are      4933 function pairs (      6012 Cartesian)
 Smallest overlap matrix eigenvalue = 5.30E-04

 Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01

 Standard Electronic Orientation quadrupole field applied
 Nucleus-field energy     =    -0.0000000197 hartrees
 ================ Generating on-the-fly SAD Guess ================
 Attempting to make child job directory: /local/scratch/users/juanes/XAS-EOM-CCSD_FeCO2-Dinfh-S0.in20240215071341//Frg1/
 Attempting to make child job directory: /local/scratch/users/juanes/XAS-EOM-CCSD_FeCO2-Dinfh-S0.in20240215071341//Frg2/
 Attempting to make child job directory: /local/scratch/users/juanes/XAS-EOM-CCSD_FeCO2-Dinfh-S0.in20240215071341//Frg3/
 Creating input file /local/scratch/users/juanes/XAS-EOM-CCSD_FeCO2-Dinfh-S0.in20240215071341/Frg1.input
 using default PutDataFrgm: nothing
 calling putenv with: QCSCRATCH=/local/scratch/users/juanes/XAS-EOM-CCSD_FeCO2-Dinfh-S0.in20240215071341/ 
 Spawning Job For Fragment 0
 Done Job For Fragment 0
 calling putenv with: QCSCRATCH=/local/scratch/users/juanes 
 calling putenv with: QCTHREADS=32 
 Creating input file /local/scratch/users/juanes/XAS-EOM-CCSD_FeCO2-Dinfh-S0.in20240215071341/Frg2.input
 using default PutDataFrgm: nothing
 calling putenv with: QCSCRATCH=/local/scratch/users/juanes/XAS-EOM-CCSD_FeCO2-Dinfh-S0.in20240215071341/ 
 Spawning Job For Fragment 1
 Done Job For Fragment 1
 calling putenv with: QCSCRATCH=/local/scratch/users/juanes 
 calling putenv with: QCTHREADS=32 
 Creating input file /local/scratch/users/juanes/XAS-EOM-CCSD_FeCO2-Dinfh-S0.in20240215071341/Frg3.input
 using default PutDataFrgm: nothing
 calling putenv with: QCSCRATCH=/local/scratch/users/juanes/XAS-EOM-CCSD_FeCO2-Dinfh-S0.in20240215071341/ 
 Spawning Job For Fragment 2
 Done Job For Fragment 2
 calling putenv with: QCSCRATCH=/local/scratch/users/juanes 
 calling putenv with: QCTHREADS=32 
 Time for running child jobs:  CPU 5.36 s  wall 502.45 s
 ============= Method Specific SAD Guess Constructed =============
 Guess from on-the-fly superposition of atomic densities
 Warning: Energy on first SCF cycle will be non-variational

 -----------------------------------------------------------------------
  General SCF calculation program by
  Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
  David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
  Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
  Bang C. Huynh
 -----------------------------------------------------------------------
 Hartree-Fock
Running Object-Oriented RKS (RHF)
 using 32 threads for integral computing
 -------------------------------------------------------
 OpenMP Integral computing Module                
 Release: version 1.0, May 2013, Q-Chem Inc. Pittsburgh 
 -------------------------------------------------------
Printing hybrid method specification in gen_scfman_hybrid_algorithm
algorithm ALGO_ID will be run until the gradient/residual is below 1E-ALGO_CONV
or ALGO_ITER iterations have been performed
----------------------------------------------
  ALGO_ID        ALGO_CONV         ALGO_ITER
----------------------------------------------
  DIIS                    2           50
  GDM                     8           500
----------------------------------------------
We will preform up to 250 macro iterations over saddle points until a stable solution is found
Energy prior to optimization (guess energy) = -1487.527452192183
Begin Timing: Total SCF Calculation
Begin Timing: SCF Single Stationary Point Calculation
Begin Timing: Algorithm 1
begin iterations for algorithm: DIIS         
the SCF tolerance is set to 1.00e-02
    1   -1487.5274521922      9.72e-03     00000 
    2   -1487.5784589380      9.44e-03     Intermediate Algorithm Converged
successfully completed hybrid algorithm stage: 1
Timing for Algorithm DIIS          : 14.00s (wall), 159.26s (cpu)
Begin Timing: Algorithm 2
begin iterations for algorithm: GDM          
the SCF tolerance is set to 1.00e-08
    1   -1487.5784589380      1.44e-01     00000  Descent step
    2   -1487.5449916776      2.45e-01     00000 Line search: overstep
    3   -1487.6406826811      3.29e-02     00000  Normal BFGS step
    4   -1487.6452584655      2.69e-02     00000  Normal BFGS step
    5   -1487.6523701298      6.02e-03     00000  Normal BFGS step
    6   -1487.6525990692      2.01e-03     00000  Normal BFGS step
    7   -1487.6526279887      6.87e-04     00000  Normal BFGS step
    8   -1487.6526337401      3.85e-04     00000  Normal BFGS step
    9   -1487.6526351499      7.46e-05     00000  Normal BFGS step
   10   -1487.6526352169      2.03e-05     00000  Normal BFGS step
   11   -1487.6526352208      3.13e-06     00000  Normal BFGS step
   12   -1487.6526352209      6.35e-07     00000  Normal BFGS step
   13   -1487.6526352209      2.24e-07     00000  Normal BFGS step
   14   -1487.6526352209      6.01e-08     00000  Normal BFGS step
   15   -1487.6526352209      1.34e-07     00000  Normal BFGS step
   16   -1487.6526352209      1.74e-08     00000  Normal BFGS step
   17   -1487.6526352209      3.44e-09     00000 Convergence criterion met
Timing for Algorithm GDM           : 242.00s (wall), 3038.69s (cpu)
Timing for Single Stationary Point: 256.00s (wall), 3197.95s (cpu)
Begin Timing: Stability
===================================================
Beginning Test for Internal Stability
===================================================
generating davidson guess vectors based on koopmans excitations
    1      1.89e+00     00000 Davidson Iteration
    2      1.76e+00     00000 Davidson Iteration
    3      2.22e-01     00000 Davidson Iteration
    4      7.06e-01     00000 Davidson Iteration
    5      1.89e-01     00000 Davidson Iteration
    6      2.13e-01     00000 Davidson Iteration
    7      3.26e-02     00000 Davidson Iteration
    8      1.05e-02     00000 Davidson Iteration
    9      8.11e-03     00000 Davidson Iteration
   10      4.03e-03     00000 Davidson Iteration
   11      1.78e-03     00000 Davidson Iteration
   12      2.85e-03     00000 Davidson Iteration
   13      7.67e-04     00000 Davidson Iteration
   14      8.06e-04     00000 Davidson Iteration
   15      1.43e-03     00000 Davidson Iteration
   16      7.01e-04     00000 Davidson Iteration
   17      5.83e-04     00000 Davidson Iteration
   18      5.84e-04     00000 Davidson Iteration
   19      6.09e-04     00000 Davidson Iteration
   20      5.77e-04     00000 Davidson Iteration
   21      7.56e-04     00000 Davidson Iteration
   22      2.91e-04     00000 Davidson Iteration
   23      8.98e-05     00000 Davidson Iteration
   24      5.51e-04     00000 Davidson Iteration
   25      1.58e-04     00000 Davidson Iteration
   26      1.11e-04     00000 Davidson Iteration
   27      5.00e-05     00000 Davidson Converged
converged_eigenvalues
  -0.0932
  -0.0932
Threshold for negative eigenvalues: -1.0e-05
solution was a saddle point (unstable)
displacing from saddle point as requested
performing a line search along the lowest hessian eigenvector after a small displacement (1E-3) to give a non-zero gradient along this direction 
===================================================
End Test for Internal Stability
===================================================
Timing for Internal Stability: 856.00s (wall), 20690.72s (cpu)
completed scf stability macro iteration 1
beginning next scf after displacing from saddle point
Begin Timing: SCF Single Stationary Point Calculation
Begin Timing: Algorithm 1
begin iterations for algorithm: DIIS         
the SCF tolerance is set to 1.00e-02
    1   -1487.6626109911      3.12e-03     00000 
    2   -1487.6583439710      4.37e-03     Intermediate Algorithm Converged
successfully completed hybrid algorithm stage: 1
Timing for Algorithm DIIS          : 15.00s (wall), 191.77s (cpu)
Begin Timing: Algorithm 2
begin iterations for algorithm: GDM          
the SCF tolerance is set to 1.00e-08
    1   -1487.6583439710      9.64e-02     00000  Normal BFGS step
    2   -1487.6155389460      2.12e-01     00000 Line search: overstep
    3   -1487.6699738126      2.56e-02     00000  Normal BFGS step
    4   -1487.6724497798      1.44e-02     00000  Normal BFGS step
    5   -1487.6744827307      1.98e-02     00000  Normal BFGS step
    6   -1487.6804286770      5.22e-02     00000  Dog-leg BFGS step
    7   -1487.6889732144      7.55e-02     00000  Dog-leg BFGS step
    8   -1487.6990528901      4.51e-02     00000  Normal BFGS step
    9   -1487.7060748894      2.45e-02     00000  Normal BFGS step
   10   -1487.7116210553      1.52e-02     00000  Normal BFGS step
   11   -1487.7142991842      8.21e-03     00000  Normal BFGS step
   12   -1487.7153208135      1.14e-02     00000  Normal BFGS step
   13   -1487.7160976831      7.19e-03     00000  Normal BFGS step
   14   -1487.7163239242      4.30e-03     00000  Normal BFGS step
   15   -1487.7164590673      2.61e-03     00000  Normal BFGS step
   16   -1487.7164885346      1.15e-03     00000  Normal BFGS step
   17   -1487.7164974275      6.04e-04     00000  Normal BFGS step
   18   -1487.7165006696      3.42e-04     00000  Normal BFGS step
   19   -1487.7165015411      1.42e-04     00000  Normal BFGS step
   20   -1487.7165016369      2.32e-05     00000  Normal BFGS step
   21   -1487.7165016428      6.17e-06     00000  Normal BFGS step
   22   -1487.7165016433      2.35e-06     00000  Normal BFGS step
   23   -1487.7165016434      7.66e-07     00000  Normal BFGS step
   24   -1487.7165016434      4.04e-07     00000  Normal BFGS step
   25   -1487.7165016434      1.70e-07     00000  Normal BFGS step
   26   -1487.7165016434      5.26e-08     00000  Normal BFGS step
   27   -1487.7165016434      4.24e-08     00000  Normal BFGS step
   28   -1487.7165016434      1.50e-08     00000  Normal BFGS step
   29   -1487.7165016434      8.76e-09     00000 Convergence criterion met
Timing for Algorithm GDM           : 409.00s (wall), 5274.34s (cpu)
Timing for Single Stationary Point: 424.00s (wall), 5466.11s (cpu)
Begin Timing: Stability
===================================================
Beginning Test for Internal Stability
===================================================
generating davidson guess vectors based on koopmans excitations
    1      1.99e+00     00000 Davidson Iteration
    2      3.46e-01     00000 Davidson Iteration
    3      4.85e-01     00000 Davidson Iteration
    4      6.34e-02     00000 Davidson Iteration
    5      9.32e-03     00000 Davidson Iteration
    6      5.76e-03     00000 Davidson Iteration
    7      2.86e-03     00000 Davidson Iteration
    8      1.21e-03     00000 Davidson Iteration
    9      6.11e-04     00000 Davidson Iteration
   10      7.52e-04     00000 Davidson Iteration
   11      1.17e-03     00000 Davidson Iteration
   12      3.45e-04     00000 Davidson Iteration
   13      1.55e-04     00000 Davidson Iteration
   14      2.23e-04     00000 Davidson Iteration
   15      1.96e-04     00000 Davidson Iteration
   16      1.01e-04     00000 Davidson Iteration
   17      8.83e-05     00000 Davidson Iteration
   18      3.37e-02     00000 Davidson Iteration
   19      2.73e-02     00000 Davidson Iteration
   20      1.60e-02     00000 Davidson Iteration
   21      1.29e-02     00000 Davidson Iteration
   22      9.62e-03     00000 Davidson Iteration
   23      6.76e-03     00000 Davidson Iteration
   24      2.99e-03     00000 Davidson Iteration
   25      7.80e-04     00000 Davidson Iteration
   26      2.90e-04     00000 Davidson Iteration
   27      1.56e-04     00000 Davidson Iteration
   28      8.37e-05     00000 Davidson Iteration
   29      9.20e-05     00000 Davidson Converged
converged_eigenvalues
   2.7416e-01
   1.4511e-01
   1.3414e-09
Threshold for negative eigenvalues: -1.0e-05
solution was a local minimum (stable)
===================================================
End Test for Internal Stability
===================================================
Timing for Internal Stability: 780.00s (wall), 20405.38s (cpu)
Our SCF solution is stable!
Timing for Total SCF: 2316.00s (wall), 49760.51s (cpu)
 Total energy in the final basis set =    -1487.7165016434
    ==================================================
              The end of Object-Oriented SCFman       
    ==================================================
 
 --------------------------------------------------------------
 
                    Orbital Energies (a.u.)
 --------------------------------------------------------------
 
 Alpha MOs
 -- Occupied --
 -261.29083   -31.84360   -27.32996   -27.32996   -27.31288   -20.68935
  -20.68935   -11.40134   -11.40134    -4.04698    -2.63459    -2.62660
   -2.62660    -1.53080    -1.53079    -0.82787    -0.82085    -0.67453
   -0.65306    -0.65306    -0.64912    -0.64912    -0.61182    -0.47612
   -0.40147    -0.40147    -0.24091
 -- Virtual --
    0.02535     0.02535     0.10296     0.10844     0.13693     0.13693
    0.15405     0.15405     0.20829     0.27375     0.31032     0.31959
    0.31959     0.41560     0.45738     0.45738     0.45948     0.49735
    0.50696     0.62036     0.75436     0.75436     0.84039     0.84039
    0.87848     0.92078     0.99581     1.01858     1.03568     1.03568
    1.28203     1.28203     1.29774     1.29932     1.29932     1.30173
    1.30201     1.34129     1.34180     1.40846     1.46984     1.46984
    1.54500     1.54500     1.59690     1.79465     1.83372     1.91523
    2.09430     2.10970     2.16551     2.16551     2.47209     2.83955
    2.91529     2.91553     2.92081     2.92085     3.25993     3.25993
    3.43531     3.45478     3.45478     3.47022     3.50068     3.50068
    3.59125     3.84752     3.89018     3.89018     4.02036     4.44760
 --------------------------------------------------------------
 
          Ground-State Mulliken Net Atomic Charges

     Atom                 Charge (a.u.)
  ----------------------------------------
      1 Fe                   -0.054231
      2 C                     0.137380
      3 C                     0.137380
      4 O                    -0.110264
      5 O                    -0.110264
  ----------------------------------------
  Sum of atomic charges =     0.000000

 -----------------------------------------------------------------
                    Cartesian Multipole Moments
 -----------------------------------------------------------------
    Charge (ESU x 10^10)
                -0.0000
    Dipole Moment (Debye)
         X       0.0000      Y      -0.0000      Z       0.0000
       Tot       0.0000
    Quadrupole Moments (Debye-Ang)
        XX     -37.4766     XY       0.0000     YY     -37.4766
        XZ       0.0000     YZ      -0.0000     ZZ     -40.3223
    Octopole Moments (Debye-Ang^2)
       XXX       0.0000    XXY      -0.0000    XYY       0.0000
       YYY      -0.0000    XXZ      -0.0000    XYZ       0.0000
       YYZ      -0.0000    XZZ       0.0000    YZZ      -0.0000
       ZZZ       0.0000
    Hexadecapole Moments (Debye-Ang^3)
      XXXX     -57.2907   XXXY       0.2945   XXYY     -18.9469
      XYYY      -0.2945   YYYY     -57.2907   XXXZ       0.0000
      XXYZ      -0.0000   XYYZ       0.0000   YYYZ      -0.0000
      XXZZ    -139.7064   XYZZ       0.0000   YYZZ    -139.7064
      XZZZ       0.0000   YZZZ      -0.0000   ZZZZ    -906.2016
 -----------------------------------------------------------------
 Total job time:  2845.25s(wall), 50074.80s(cpu) 
 Thu Feb 15 08:01:27 2024

        *************************************************************
        *                                                           *
        *  Thank you very much for using Q-Chem.  Have a nice day.  *
        *                                                           *
        *************************************************************

Output 2. RI-K-BCC2 calculation.

User input: 2 of 3 
 
                  Welcome to Q-Chem
     A Quantum Leap Into The Future Of Chemistry


 Q-Chem 6.1 (devel), Q-Chem, Inc., Pleasanton, CA (2023)

 E. Epifanovsky,  A. T. B. Gilbert,  Xintian Feng,  Joonho Lee,  Yuezhi Mao,  
 N. Mardirossian,  P. Pokhilko,  A. White,  M. Wormit,  M. P. Coons,  
 A. L. Dempwolff,  Zhengting Gan,  D. Hait,  P. R. Horn,  L. D. Jacobson,  
 I. Kaliman,  J. Kussmann,  A. W. Lange,  Ka Un Lao,  D. S. Levine,  Jie Liu,  
 S. C. McKenzie,  A. F. Morrison,  K. D. Nanda,  F. Plasser,  D. R. Rehn,  
 M. L. Vidal,  Zhi-Qiang You,  Ying Zhu,  B. Alam,  B. Albrecht,  
 A. Aldossary,  E. Alguire,  J. H. Andersen,  V. Athavale,  D. Barton,  
 K. Begam,  A. Behn,  N. Bellonzi,  Y. A. Bernard,  E. J. Berquist,  
 H. Burton,  A. Carreras,  K. Carter-Fenk,  Mathew Chow,  Romit Chakraborty,  
 Chandrima Chakravarty,  Junhan Chen,  A. D. Chien,  K. D. Closser,  
 V. Cofer-Shabica,  L. Cunha,  S. Dasgupta,  Jia Deng,  M. de Wergifosse,  
 M. Diedenhofen,  Hainam Do,  S. Ehlert,  Po-Tung Fang,  S. Fatehi,  
 Qingguo Feng,  T. Friedhoff,  Thomas Froitzheim,  B. Ganoe,  J. Gayvert,  
 Qinghui Ge,  G. Gidofalvi,  M. Gimferrer,  M. Goldey,  Montgomery Gray,  
 J. Gomes,  C. Gonzalez-Espinoza,  S. Gulania,  A. Gunina,  J. A. Gyamfi,  
 M. W. D. Hanson-Heine,  P. H. P. Harbach,  A. W. Hauser,  M. F. Herbst,  
 M. Hernandez Vera,  M. Hodecker,  Z. C. Holden,  S. Houck,  Xunkun Huang,  
 Kerwin Hui,  B. C. Huynh,  K. Ikeda,  M. Ivanov,  Hyunjun Ji,  Zuxin Jin,  
 Hanjie Jiang,  Subrata Jana,  B. Kaduk,  S. Kaehler,  R. Kang,  
 K. Khistyaev,  Jaehoon Kim,  Yongbin Kim,  P. Klunzinger,  Z. Koczor-Benda,  
 Joong Hoon Koh,  D. Kosenkov,  Saikiran Kotaru,  L. Koulias,  T. Kowalczyk,  
 C. M. Krauter,  K. Kue,  A. Kunitsa,  T. Kus,  A. Landau,  K. V. Lawler,  
 D. Lefrancois,  S. Lehtola,  Rain Li,  Shaozhi Li,  Yi-Pei Li,  
 Jiashu Liang,  M. Liebenthal,  Hung-Hsuan Lin,  You-Sheng Lin,  Fenglai Liu,  
 Kuan-Yu Liu,  Xiao Liu,  M. Loipersberger,  A. Luenser,  C. Malbon,  
 A. Manjanath,  P. Manohar,  E. Mansoor,  S. F. Manzer,  Shan-Ping Mao,  
 A. V. Marenich,  T. Markovich,  S. Mason,  F. Matz,  S. A. Maurer,  
 P. F. McLaughlin,  M. F. S. J. Menger,  J.-M. Mewes,  S. A. Mewes,  
 P. Morgante,  Mohammad Mostafanejad,  J. W. Mullinax,  K. J. Oosterbaan,  
 G. Paran,  V. Parravicini,  Alexander C. Paul,  Suranjan K. Paul,  
 F. Pavosevic,  Zheng Pei,  S. Prager,  E. I. Proynov,  E. Ramos,  B. Rana,  
 A. E. Rask,  A. Rettig,  R. M. Richard,  F. Rob,  E. Rossomme,  T. Scheele,  
 M. Scheurer,  M. Schneider,  P. E. Schneider,  Tim K. Schramm,  N. Sergueev,  
 S. M. Sharada,  M. Sharma,  Hengyuan Shen,  W. Skomorowski,  D. W. Small,  
 C. J. Stein,  Alistair J. Sterling,  Yingli Su,  Yu-Chuan Su,  
 E. J. Sundstrom,  J. Talbot,  Zhen Tao,  J. Thirman,  Hung-Yi Tsai,  
 T. Tsuchimochi,  N. M. Tubman,  C. Utku,  S. P. Veccham,  O. Vydrov,  
 J. Wenzel,  Jonathan Wong,  J. Witte,  A. Yamada,  Chou-Hsun Yang,  Kun Yao,  
 S. Yeganeh,  S. R. Yost,  A. Zech,  F. Zeller,  Igor Ying Zhang,  
 Xing Zhang,  Yu Zhang,  D. Zuev,  A. Aspuru-Guzik,  A. T. Bell,  
 N. A. Besley,  K. B. Bravaya,  B. R. Brooks,  D. Casanova,  Jeng-Da Chai,  
 Hsing-Ta Chen,  S. Coriani,  C. J. Cramer,  A. E. DePrince, III,  
 R. A. DiStasio Jr.,  A. Dreuw,  B. D. Dunietz,  T. R. Furlani,  
 W. A. Goddard III,  S. Grimme,  S. Hammes-Schiffer,  T. Head-Gordon,  
 W. J. Hehre,  Chao-Ping Hsu,  T.-C. Jagau,  Yousung Jung,  A. Klamt,  
 Jing Kong,  D. S. Lambrecht,  Xiangyuan Li,  WanZhen Liang,  N. J. Mayhall,  
 C. W. McCurdy,  J. B. Neaton,  T. Neudecker,  C. Ochsenfeld,  
 J. A. Parkhill,  R. Peverati,  V. A. Rassolov,  Haisheng Ren,  Yihan Shao,  
 L. V. Slipchenko,  R. P. Steele,  J. E. Subotnik,  A. J. W. Thom,  
 A. Tkatchenko,  D. G. Truhlar,  T. Van Voorhis,  Fan Wang,  
 T. A. Wesolowski,  K. B. Whaley,  H. L. Woodcock III,  P. M. Zimmerman,  
 S. Faraji,  P. M. W. Gill,  M. Head-Gordon,  J. M. Herbert,  A. I. Krylov

 Contributors to earlier versions of Q-Chem not listed above: 
 R. D. Adamson,  B. Austin,  R. Baer,  J. Baker,  G. J. O. Beran,  
 K. Brandhorst,  S. T. Brown,  E. F. C. Byrd,  Arup K. Chakraborty,  
 G. K. L. Chan,  Chun-Min Chang,  Yunqing Chen,  C.-L. Cheng,  
 Siu Hung Chien,  D. M. Chipman,  D. L. Crittenden,  H. Dachsel,  
 R. J. Doerksen,  A. D. Dutoi,  R. G. Edgar,  J. Fosso-Tande,  
 L. Fusti-Molnar,  D. Ghosh,  A. Ghysels,  A. Golubeva-Zadorozhnaya,  
 J. Gonthier,  M. S. Gordon,  S. R. Gwaltney,  G. Hawkins,  J. E. Herr,  
 A. Heyden,  S. Hirata,  E. G. Hohenstein,  G. Kedziora,  F. J. Keil,  
 C. Kelley,  Jihan Kim,  R. A. King,  R. Z. Khaliullin,  P. P. Korambath,  
 W. Kurlancheek,  A. Laurent,  A. M. Lee,  M. S. Lee,  S. V. Levchenko,  
 Ching Yeh Lin,  D. Liotard,  E. Livshits,  R. C. Lochan,  I. Lotan,  
 L. A. Martinez-Martinez,  P. E. Maslen,  N. Nair,  D. P. O'Neill,  
 D. Neuhauser,  E. Neuscamman,  C. M. Oana,  R. Olivares-Amaya,  R. Olson,  
 T. M. Perrine,  B. Peters,  P. A. Pieniazek,  A. Prociuk,  Y. M. Rhee,  
 J. Ritchie,  M. A. Rohrdanz,  E. Rosta,  N. J. Russ,  H. F. Schaefer III,  
 M. W. Schmidt,  N. E. Schultz,  S. Sharma,  N. Shenvi,  C. D. Sherrill,  
 A. C. Simmonett,  A. Sodt,  T. Stein,  D. Stuck,  K. S. Thanthiriwatte,  
 V. Vanovschi,  L. Vogt,  Tao Wang,  A. Warshel,  M. A. Watson,  
 C. F. Williams,  Q. Wu,  X. Xu,  Jun Yang,  W. Zhang,  Yan Zhao

   Please cite Q-Chem as follows:
  "Software for the frontiers of quantum chemistry:
   An overview of developments in the Q-Chem 5 package"
   J. Chem. Phys. 155, 084801 (2021)
   https://doi.org/10.1063/5.0055522 (open access)

 Q-Chem 6.1.1 for Intel X86 EM64T Linux

 Parts of Q-Chem use Armadillo 9.900.5 (Nocturnal Misbehaviour).
 http://arma.sourceforge.net/

 Q-Chem begins on Thu Feb 15 08:01:28 2024  

 Host: n0044.mhg0
0

     Scratch files written to /local/scratch/users/juanes/XAS-EOM-CCSD_FeCO2-Dinfh-S0.in20240215071341//
 Processing $rem in /global/scratch/users/juanes/Trunk-w-SS-mixing/config/preferences:
 Processing $rem in /global/home/users/juanes/.qchemrc:

 Checking the input file for inconsistencies... 	...done.

--------------------------------------------------------------
User input:
--------------------------------------------------------------

$comment
  RI-BCC2 to produce better orbitals.
$end

$molecule
  0   1
  Fe
  C   1 rFeC
  X   1 rFeC  2 a_90
  C   1 rnFeC 3 a_90 2 d_0 
  O   1 rFeO  3 a_90 2 d_0          
  O   1 rnFeO 3 a_90 2 d_0          

  rnFeC = -1.848757
  rFeC  =  1.848757
  rnFeO = -2.992985
  rFeO  =  2.992985
  a_90  = 90.000000
  d_0   =  0.000000
$end

$rem
  METHOD               HF
  UNRESTRICTED         FALSE
  BASIS                GEN
  AUX_BASIS            GEN
  PURECART             11111
  SYMMETRY             FALSE
  SYM_IGNORE           TRUE
  GEN_SCFMAN_FINAL     TRUE
  SCF_GUESS            READ
  SCF_ALGORITHM        DIIS
  SCF_CONVERGENCE      8
  MAX_SCF_CYCLES       200
  DO_BCC2              3
  REGULARIZED_O2       2
  REG_VARIABLE         1200
  MEM_TOTAL            32000
  MEM_STATIC           1000
  THRESH               14
$end

$basis
C    0
cc-pVDZ
****
O    0
cc-pVDZ
****
Fe    0
cc-pVDZ
****
$end

$aux_basis
C    0
RIMP2-cc-pVDZ
****
O    0
RIMP2-cc-pVDZ
****
Fe    0
RIMP2-cc-pVDZ
****
$end

--------------------------------------------------------------
 ----------------------------------------------------------------
             Standard Nuclear Orientation (Angstroms)
    I     Atom           X                Y                Z
 ----------------------------------------------------------------
    1      Fe      0.0000000000     0.0000000000     0.0000000000
    2      C       0.0000000000     0.0000000000     1.8487570000
    3      C      -0.0000000000     0.0000000000    -1.8487570000
    4      O       0.0000000000     0.0000000000     2.9929850000
    5      O      -0.0000000000     0.0000000000    -2.9929850000
 ----------------------------------------------------------------
 Nuclear Repulsion Energy =         228.55618302 hartrees
 There are       27 alpha and       27 beta electrons
 Requested basis set is non-standard
 There are 39 shells and 99 basis functions

 Total QAlloc Memory Limit  32000 MB
 Mega-Array Size       978 MB
 MEM_STATIC part      1000 MB


                       Distance Matrix (Angstroms)
             Fe(  1)   C (  2)   C (  3)   O (  4)
   C (  2)  1.848757
   C (  3)  1.848757  3.697514
   O (  4)  2.992985  1.144228  4.841742
   O (  5)  2.992985  4.841742  1.144228  5.985970
 
 Requested basis set is non-standard
 There are 157 shells and 625 basis functions
 A cutoff of  1.0D-14 yielded    745 shell pairs
 There are      4933 function pairs (      6012 Cartesian)
 Smallest overlap matrix eigenvalue = 5.30E-04

 Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01

 Standard Electronic Orientation quadrupole field applied
 Nucleus-field energy     =    -0.0000000197 hartrees
 Guess MOs from SCF MO coefficient file

 -----------------------------------------------------------------------
  General SCF calculation program by
  Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
  David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
  Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
  Bang C. Huynh
 -----------------------------------------------------------------------
 Hartree-Fock
 Entered gen_scfman_final...
 using 32 threads for integral computing
 -------------------------------------------------------
 OpenMP Integral computing Module                
 Release: version 1.0, May 2013, Q-Chem Inc. Pittsburgh 
 -------------------------------------------------------
 nfzocc = 0, nfzvir = 0
 A restricted SCF calculation will be
 performed with CC2 correlation with kappa-regularizer (reg. param. = 1.2000e+00)
 using
 DIIS
 SCF converges when DIIS error is below 1.0e-08
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1786215471 a.u.
        abab    correlation energy =        -0.7755592537 a.u.
        bbbb    correlation energy =        -0.1786215471 a.u.
        total same-spin energy     =        -0.3572430942 a.u.
        total opposite-spin energy =        -0.7755592537 a.u.

 Total  RI-CC2   correlation energy =        -1.1328023480 a.u.
        RI-CC2         total energy =     -1488.8493039914 a.u.

 ----------------------------------------------
  Cycle       Energy         DIIS error
 ----------------------------------------------
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1723543263 a.u.
        abab    correlation energy =        -0.7558627381 a.u.
        bbbb    correlation energy =        -0.1723543263 a.u.
        total same-spin energy     =        -0.3447086525 a.u.
        total opposite-spin energy =        -0.7558627381 a.u.

 Total  RI-CC2   correlation energy =        -1.1005713906 a.u.
        RI-CC2         total energy =     -1488.8087065375 a.u.

    1   -1488.8087065375      1.02e-03  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1846192687 a.u.
        abab    correlation energy =        -0.7955557158 a.u.
        bbbb    correlation energy =        -0.1846192687 a.u.
        total same-spin energy     =        -0.3692385373 a.u.
        total opposite-spin energy =        -0.7955557158 a.u.

 Total  RI-CC2   correlation energy =        -1.1647942531 a.u.
        RI-CC2         total energy =     -1488.8651613638 a.u.

    2   -1488.8651613638      1.47e-03  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1927757074 a.u.
        abab    correlation energy =        -0.8202204363 a.u.
        bbbb    correlation energy =        -0.1927757074 a.u.
        total same-spin energy     =        -0.3855514148 a.u.
        total opposite-spin energy =        -0.8202204363 a.u.

 Total  RI-CC2   correlation energy =        -1.2057718512 a.u.
        RI-CC2         total energy =     -1488.8960936478 a.u.

    3   -1488.8960936478      7.90e-04  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1934329946 a.u.
        abab    correlation energy =        -0.8233784821 a.u.
        bbbb    correlation energy =        -0.1934329946 a.u.
        total same-spin energy     =        -0.3868659891 a.u.
        total opposite-spin energy =        -0.8233784821 a.u.

 Total  RI-CC2   correlation energy =        -1.2102444712 a.u.
        RI-CC2         total energy =     -1488.8936527276 a.u.

    4   -1488.8936527276      3.29e-04  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1982082409 a.u.
        abab    correlation energy =        -0.8361021491 a.u.
        bbbb    correlation energy =        -0.1982082409 a.u.
        total same-spin energy     =        -0.3964164819 a.u.
        total opposite-spin energy =        -0.8361021491 a.u.

 Total  RI-CC2   correlation energy =        -1.2325186310 a.u.
        RI-CC2         total energy =     -1488.9002920567 a.u.

    5   -1488.9002920567      3.76e-04  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1997224927 a.u.
        abab    correlation energy =        -0.8404046315 a.u.
        bbbb    correlation energy =        -0.1997224927 a.u.
        total same-spin energy     =        -0.3994449853 a.u.
        total opposite-spin energy =        -0.8404046315 a.u.

 Total  RI-CC2   correlation energy =        -1.2398496168 a.u.
        RI-CC2         total energy =     -1488.9015667460 a.u.

    6   -1488.9015667460      2.09e-04  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1996367486 a.u.
        abab    correlation energy =        -0.8400462336 a.u.
        bbbb    correlation energy =        -0.1996367486 a.u.
        total same-spin energy     =        -0.3992734972 a.u.
        total opposite-spin energy =        -0.8400462336 a.u.

 Total  RI-CC2   correlation energy =        -1.2393197308 a.u.
        RI-CC2         total energy =     -1488.9027840154 a.u.

    7   -1488.9027840154      1.29e-04  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1996507908 a.u.
        abab    correlation energy =        -0.8399861427 a.u.
        bbbb    correlation energy =        -0.1996507908 a.u.
        total same-spin energy     =        -0.3993015816 a.u.
        total opposite-spin energy =        -0.8399861427 a.u.

 Total  RI-CC2   correlation energy =        -1.2392877242 a.u.
        RI-CC2         total energy =     -1488.9034078124 a.u.

    8   -1488.9034078124      6.71e-05  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1995941586 a.u.
        abab    correlation energy =        -0.8397988558 a.u.
        bbbb    correlation energy =        -0.1995941586 a.u.
        total same-spin energy     =        -0.3991883171 a.u.
        total opposite-spin energy =        -0.8397988558 a.u.

 Total  RI-CC2   correlation energy =        -1.2389871730 a.u.
        RI-CC2         total energy =     -1488.9037193467 a.u.

    9   -1488.9037193467      2.61e-05  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1996066863 a.u.
        abab    correlation energy =        -0.8397995172 a.u.
        bbbb    correlation energy =        -0.1996066863 a.u.
        total same-spin energy     =        -0.3992133726 a.u.
        total opposite-spin energy =        -0.8397995172 a.u.

 Total  RI-CC2   correlation energy =        -1.2390128898 a.u.
        RI-CC2         total energy =     -1488.9036325175 a.u.

   10   -1488.9036325175      2.18e-05  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1995975286 a.u.
        abab    correlation energy =        -0.8397705234 a.u.
        bbbb    correlation energy =        -0.1995975286 a.u.
        total same-spin energy     =        -0.3991950572 a.u.
        total opposite-spin energy =        -0.8397705234 a.u.

 Total  RI-CC2   correlation energy =        -1.2389655806 a.u.
        RI-CC2         total energy =     -1488.9036641178 a.u.

   11   -1488.9036641178      4.42e-06  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1996077503 a.u.
        abab    correlation energy =        -0.8398034274 a.u.
        bbbb    correlation energy =        -0.1996077503 a.u.
        total same-spin energy     =        -0.3992155007 a.u.
        total opposite-spin energy =        -0.8398034274 a.u.

 Total  RI-CC2   correlation energy =        -1.2390189281 a.u.
        RI-CC2         total energy =     -1488.9036398742 a.u.

   12   -1488.9036398742      4.67e-06  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1996097537 a.u.
        abab    correlation energy =        -0.8398148280 a.u.
        bbbb    correlation energy =        -0.1996097537 a.u.
        total same-spin energy     =        -0.3992195074 a.u.
        total opposite-spin energy =        -0.8398148280 a.u.

 Total  RI-CC2   correlation energy =        -1.2390343354 a.u.
        RI-CC2         total energy =     -1488.9036316650 a.u.

   13   -1488.9036316650      1.48e-06  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1996077102 a.u.
        abab    correlation energy =        -0.8398085355 a.u.
        bbbb    correlation energy =        -0.1996077102 a.u.
        total same-spin energy     =        -0.3992154205 a.u.
        total opposite-spin energy =        -0.8398085355 a.u.

 Total  RI-CC2   correlation energy =        -1.2390239560 a.u.
        RI-CC2         total energy =     -1488.9036372035 a.u.

   14   -1488.9036372035      6.16e-07  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1996060768 a.u.
        abab    correlation energy =        -0.8398050882 a.u.
        bbbb    correlation energy =        -0.1996060768 a.u.
        total same-spin energy     =        -0.3992121537 a.u.
        total opposite-spin energy =        -0.8398050882 a.u.

 Total  RI-CC2   correlation energy =        -1.2390172419 a.u.
        RI-CC2         total energy =     -1488.9036391168 a.u.

   15   -1488.9036391168      4.42e-07  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1996057551 a.u.
        abab    correlation energy =        -0.8398040385 a.u.
        bbbb    correlation energy =        -0.1996057551 a.u.
        total same-spin energy     =        -0.3992115101 a.u.
        total opposite-spin energy =        -0.8398040385 a.u.

 Total  RI-CC2   correlation energy =        -1.2390155486 a.u.
        RI-CC2         total energy =     -1488.9036399933 a.u.

   16   -1488.9036399933      8.21e-08  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1996058872 a.u.
        abab    correlation energy =        -0.8398046759 a.u.
        bbbb    correlation energy =        -0.1996058872 a.u.
        total same-spin energy     =        -0.3992117743 a.u.
        total opposite-spin energy =        -0.8398046759 a.u.

 Total  RI-CC2   correlation energy =        -1.2390164502 a.u.
        RI-CC2         total energy =     -1488.9036390069 a.u.

   17   -1488.9036390069      1.04e-07  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1996056071 a.u.
        abab    correlation energy =        -0.8398040023 a.u.
        bbbb    correlation energy =        -0.1996056071 a.u.
        total same-spin energy     =        -0.3992112143 a.u.
        total opposite-spin energy =        -0.8398040023 a.u.

 Total  RI-CC2   correlation energy =        -1.2390152166 a.u.
        RI-CC2         total energy =     -1488.9036391084 a.u.

   18   -1488.9036391084      3.33e-08  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1996057206 a.u.
        abab    correlation energy =        -0.8398043452 a.u.
        bbbb    correlation energy =        -0.1996057206 a.u.
        total same-spin energy     =        -0.3992114412 a.u.
        total opposite-spin energy =        -0.8398043452 a.u.

 Total  RI-CC2   correlation energy =        -1.2390157864 a.u.
        RI-CC2         total energy =     -1488.9036390716 a.u.

   19   -1488.9036390716      1.62e-08  
 Components of the RICC2 correlation energy:
        aaaa    correlation energy =        -0.1996054513 a.u.
        abab    correlation energy =        -0.8398034705 a.u.
        bbbb    correlation energy =        -0.1996054513 a.u.
        total same-spin energy     =        -0.3992109026 a.u.
        total opposite-spin energy =        -0.8398034705 a.u.

 Total  RI-CC2   correlation energy =        -1.2390143731 a.u.
        RI-CC2         total energy =     -1488.9036391586 a.u.

   20   -1488.9036391586      2.26e-08  
   21   -1488.9036391586      5.07e-09  
   21   -1488.9036391586      5.07e-09  Convergence criterion met
 ----------------------------------------------
 <S^2> = 0.00000
 ---------------------------------------
 SCF time:   CPU 4500.40s  wall 322.00s 
 Total energy in the final basis set =    -1488.9036391586
 
 --------------------------------------------------------------
 
                    Orbital Energies (a.u.)
 --------------------------------------------------------------
 
 Alpha MOs
 -- Occupied --
 -261.45585   -32.00043   -27.48904   -27.48904   -27.46769   -20.68431
  -20.68431   -11.34571   -11.34570    -4.15877    -2.73508    -2.73340
   -2.73340    -1.51627    -1.51625    -0.82082    -0.81269    -0.67442
   -0.64260    -0.64260    -0.63769    -0.63769    -0.59128    -0.55051
   -0.41696    -0.41696    -0.33785
 -- Virtual --
    0.02108     0.02108     0.08683     0.11203     0.13759     0.13759
    0.14829     0.14829     0.15865     0.23898     0.29949     0.31590
    0.31590     0.36492     0.46325     0.46325     0.46511     0.48385
    0.50967     0.61004     0.77237     0.77237     0.85400     0.85400
    0.88589     0.92242     1.00267     1.00267     1.00592     1.02222
    1.28167     1.28167     1.28770     1.30170     1.30170     1.32603
    1.32650     1.36571     1.36645     1.39922     1.46510     1.46510
    1.55426     1.55426     1.60885     1.73118     1.82524     1.83685
    2.08662     2.10046     2.13556     2.13556     2.45698     2.83406
    2.91703     2.91735     2.92320     2.92323     3.24346     3.24346
    3.37118     3.37563     3.37563     3.40495     3.50450     3.50450
    3.57227     3.84511     3.84511     3.85066     4.01461     4.39296
 --------------------------------------------------------------
 
          Ground-State Mulliken Net Atomic Charges

     Atom                 Charge (a.u.)
  ----------------------------------------
      1 Fe                    0.002686
      2 C                     0.001571
      3 C                     0.001571
      4 O                    -0.002913
      5 O                    -0.002913
  ----------------------------------------
  Sum of atomic charges =     0.000000

 -----------------------------------------------------------------
                    Cartesian Multipole Moments
 -----------------------------------------------------------------
    Charge (ESU x 10^10)
                -0.0000
    Dipole Moment (Debye)
         X       0.0000      Y      -0.0000      Z      -0.0000
       Tot       0.0000
    Quadrupole Moments (Debye-Ang)
        XX     -37.0897     XY       0.0000     YY     -37.0897
        XZ      -0.0000     YZ       0.0000     ZZ     -40.2032
    Octopole Moments (Debye-Ang^2)
       XXX       0.0000    XXY      -0.0000    XYY       0.0000
       YYY      -0.0000    XXZ      -0.0000    XYZ      -0.0000
       YYZ      -0.0000    XZZ       0.0000    YZZ      -0.0000
       ZZZ      -0.0000
    Hexadecapole Moments (Debye-Ang^3)
      XXXX     -51.4122   XXXY       0.5487   XXYY     -16.8580
      XYYY      -0.5487   YYYY     -51.4122   XXXZ       0.0000
      XXYZ      -0.0000   XYYZ      -0.0000   YYYZ       0.0000
      XXZZ    -139.1402   XYZZ       0.0000   YYZZ    -139.1402
      XZZZ       0.0000   YZZZ      -0.0000   ZZZZ    -873.4912
 -----------------------------------------------------------------
 Total job time:  324.19s(wall), 4516.55s(cpu) 
 Thu Feb 15 08:06:52 2024

        *************************************************************
        *                                                           *
        *  Thank you very much for using Q-Chem.  Have a nice day.  *
        *                                                           *
        *************************************************************

The output of job 3 is too long to paste here (I run out of characters) so I’ll paste the key steps. Part 1: CCSD R and L calculation.

User input: 3 of 3 
 
                  Welcome to Q-Chem
     A Quantum Leap Into The Future Of Chemistry


 Q-Chem 6.1 (devel), Q-Chem, Inc., Pleasanton, CA (2023)

 E. Epifanovsky,  A. T. B. Gilbert,  Xintian Feng,  Joonho Lee,  Yuezhi Mao,  
 N. Mardirossian,  P. Pokhilko,  A. White,  M. Wormit,  M. P. Coons,  
 A. L. Dempwolff,  Zhengting Gan,  D. Hait,  P. R. Horn,  L. D. Jacobson,  
 I. Kaliman,  J. Kussmann,  A. W. Lange,  Ka Un Lao,  D. S. Levine,  Jie Liu,  
 S. C. McKenzie,  A. F. Morrison,  K. D. Nanda,  F. Plasser,  D. R. Rehn,  
 M. L. Vidal,  Zhi-Qiang You,  Ying Zhu,  B. Alam,  B. Albrecht,  
 A. Aldossary,  E. Alguire,  J. H. Andersen,  V. Athavale,  D. Barton,  
 K. Begam,  A. Behn,  N. Bellonzi,  Y. A. Bernard,  E. J. Berquist,  
 H. Burton,  A. Carreras,  K. Carter-Fenk,  Mathew Chow,  Romit Chakraborty,  
 Chandrima Chakravarty,  Junhan Chen,  A. D. Chien,  K. D. Closser,  
 V. Cofer-Shabica,  L. Cunha,  S. Dasgupta,  Jia Deng,  M. de Wergifosse,  
 M. Diedenhofen,  Hainam Do,  S. Ehlert,  Po-Tung Fang,  S. Fatehi,  
 Qingguo Feng,  T. Friedhoff,  Thomas Froitzheim,  B. Ganoe,  J. Gayvert,  
 Qinghui Ge,  G. Gidofalvi,  M. Gimferrer,  M. Goldey,  Montgomery Gray,  
 J. Gomes,  C. Gonzalez-Espinoza,  S. Gulania,  A. Gunina,  J. A. Gyamfi,  
 M. W. D. Hanson-Heine,  P. H. P. Harbach,  A. W. Hauser,  M. F. Herbst,  
 M. Hernandez Vera,  M. Hodecker,  Z. C. Holden,  S. Houck,  Xunkun Huang,  
 Kerwin Hui,  B. C. Huynh,  K. Ikeda,  M. Ivanov,  Hyunjun Ji,  Zuxin Jin,  
 Hanjie Jiang,  Subrata Jana,  B. Kaduk,  S. Kaehler,  R. Kang,  
 K. Khistyaev,  Jaehoon Kim,  Yongbin Kim,  P. Klunzinger,  Z. Koczor-Benda,  
 Joong Hoon Koh,  D. Kosenkov,  Saikiran Kotaru,  L. Koulias,  T. Kowalczyk,  
 C. M. Krauter,  K. Kue,  A. Kunitsa,  T. Kus,  A. Landau,  K. V. Lawler,  
 D. Lefrancois,  S. Lehtola,  Rain Li,  Shaozhi Li,  Yi-Pei Li,  
 Jiashu Liang,  M. Liebenthal,  Hung-Hsuan Lin,  You-Sheng Lin,  Fenglai Liu,  
 Kuan-Yu Liu,  Xiao Liu,  M. Loipersberger,  A. Luenser,  C. Malbon,  
 A. Manjanath,  P. Manohar,  E. Mansoor,  S. F. Manzer,  Shan-Ping Mao,  
 A. V. Marenich,  T. Markovich,  S. Mason,  F. Matz,  S. A. Maurer,  
 P. F. McLaughlin,  M. F. S. J. Menger,  J.-M. Mewes,  S. A. Mewes,  
 P. Morgante,  Mohammad Mostafanejad,  J. W. Mullinax,  K. J. Oosterbaan,  
 G. Paran,  V. Parravicini,  Alexander C. Paul,  Suranjan K. Paul,  
 F. Pavosevic,  Zheng Pei,  S. Prager,  E. I. Proynov,  E. Ramos,  B. Rana,  
 A. E. Rask,  A. Rettig,  R. M. Richard,  F. Rob,  E. Rossomme,  T. Scheele,  
 M. Scheurer,  M. Schneider,  P. E. Schneider,  Tim K. Schramm,  N. Sergueev,  
 S. M. Sharada,  M. Sharma,  Hengyuan Shen,  W. Skomorowski,  D. W. Small,  
 C. J. Stein,  Alistair J. Sterling,  Yingli Su,  Yu-Chuan Su,  
 E. J. Sundstrom,  J. Talbot,  Zhen Tao,  J. Thirman,  Hung-Yi Tsai,  
 T. Tsuchimochi,  N. M. Tubman,  C. Utku,  S. P. Veccham,  O. Vydrov,  
 J. Wenzel,  Jonathan Wong,  J. Witte,  A. Yamada,  Chou-Hsun Yang,  Kun Yao,  
 S. Yeganeh,  S. R. Yost,  A. Zech,  F. Zeller,  Igor Ying Zhang,  
 Xing Zhang,  Yu Zhang,  D. Zuev,  A. Aspuru-Guzik,  A. T. Bell,  
 N. A. Besley,  K. B. Bravaya,  B. R. Brooks,  D. Casanova,  Jeng-Da Chai,  
 Hsing-Ta Chen,  S. Coriani,  C. J. Cramer,  A. E. DePrince, III,  
 R. A. DiStasio Jr.,  A. Dreuw,  B. D. Dunietz,  T. R. Furlani,  
 W. A. Goddard III,  S. Grimme,  S. Hammes-Schiffer,  T. Head-Gordon,  
 W. J. Hehre,  Chao-Ping Hsu,  T.-C. Jagau,  Yousung Jung,  A. Klamt,  
 Jing Kong,  D. S. Lambrecht,  Xiangyuan Li,  WanZhen Liang,  N. J. Mayhall,  
 C. W. McCurdy,  J. B. Neaton,  T. Neudecker,  C. Ochsenfeld,  
 J. A. Parkhill,  R. Peverati,  V. A. Rassolov,  Haisheng Ren,  Yihan Shao,  
 L. V. Slipchenko,  R. P. Steele,  J. E. Subotnik,  A. J. W. Thom,  
 A. Tkatchenko,  D. G. Truhlar,  T. Van Voorhis,  Fan Wang,  
 T. A. Wesolowski,  K. B. Whaley,  H. L. Woodcock III,  P. M. Zimmerman,  
 S. Faraji,  P. M. W. Gill,  M. Head-Gordon,  J. M. Herbert,  A. I. Krylov

 Contributors to earlier versions of Q-Chem not listed above: 
 R. D. Adamson,  B. Austin,  R. Baer,  J. Baker,  G. J. O. Beran,  
 K. Brandhorst,  S. T. Brown,  E. F. C. Byrd,  Arup K. Chakraborty,  
 G. K. L. Chan,  Chun-Min Chang,  Yunqing Chen,  C.-L. Cheng,  
 Siu Hung Chien,  D. M. Chipman,  D. L. Crittenden,  H. Dachsel,  
 R. J. Doerksen,  A. D. Dutoi,  R. G. Edgar,  J. Fosso-Tande,  
 L. Fusti-Molnar,  D. Ghosh,  A. Ghysels,  A. Golubeva-Zadorozhnaya,  
 J. Gonthier,  M. S. Gordon,  S. R. Gwaltney,  G. Hawkins,  J. E. Herr,  
 A. Heyden,  S. Hirata,  E. G. Hohenstein,  G. Kedziora,  F. J. Keil,  
 C. Kelley,  Jihan Kim,  R. A. King,  R. Z. Khaliullin,  P. P. Korambath,  
 W. Kurlancheek,  A. Laurent,  A. M. Lee,  M. S. Lee,  S. V. Levchenko,  
 Ching Yeh Lin,  D. Liotard,  E. Livshits,  R. C. Lochan,  I. Lotan,  
 L. A. Martinez-Martinez,  P. E. Maslen,  N. Nair,  D. P. O'Neill,  
 D. Neuhauser,  E. Neuscamman,  C. M. Oana,  R. Olivares-Amaya,  R. Olson,  
 T. M. Perrine,  B. Peters,  P. A. Pieniazek,  A. Prociuk,  Y. M. Rhee,  
 J. Ritchie,  M. A. Rohrdanz,  E. Rosta,  N. J. Russ,  H. F. Schaefer III,  
 M. W. Schmidt,  N. E. Schultz,  S. Sharma,  N. Shenvi,  C. D. Sherrill,  
 A. C. Simmonett,  A. Sodt,  T. Stein,  D. Stuck,  K. S. Thanthiriwatte,  
 V. Vanovschi,  L. Vogt,  Tao Wang,  A. Warshel,  M. A. Watson,  
 C. F. Williams,  Q. Wu,  X. Xu,  Jun Yang,  W. Zhang,  Yan Zhao

   Please cite Q-Chem as follows:
  "Software for the frontiers of quantum chemistry:
   An overview of developments in the Q-Chem 5 package"
   J. Chem. Phys. 155, 084801 (2021)
   https://doi.org/10.1063/5.0055522 (open access)

 Q-Chem 6.1.1 for Intel X86 EM64T Linux

 Parts of Q-Chem use Armadillo 9.900.5 (Nocturnal Misbehaviour).
 http://arma.sourceforge.net/

 Q-Chem begins on Thu Feb 15 08:06:53 2024  

 Host: n0044.mhg0
0

     Scratch files written to /local/scratch/users/juanes/XAS-EOM-CCSD_FeCO2-Dinfh-S0.in20240215071341//
 Processing $rem in /global/scratch/users/juanes/Trunk-w-SS-mixing/config/preferences:
 Processing $rem in /global/home/users/juanes/.qchemrc:

 Checking the input file for inconsistencies... 	...done.

--------------------------------------------------------------
User input:
--------------------------------------------------------------

$comment
  EOM-EE-CCSD calculation for core excited states.
$end

$molecule
  0   1
  Fe
  C   1 rFeC
  X   1 rFeC  2 a_90
  C   1 rnFeC 3 a_90 2 d_0 
  O   1 rFeO  3 a_90 2 d_0          
  O   1 rnFeO 3 a_90 2 d_0          

  rnFeC = -1.848757
  rFeC  =  1.848757
  rnFeO = -2.992985
  rFeO  =  2.992985
  a_90  = 90.000000
  d_0   =  0.000000
$end

$rem
  METHOD               EOM-CCSD
  UNRESTRICTED         FALSE
  BASIS                GEN
  PURECART             11111
  SYMMETRY             FALSE
  SYM_IGNORE           TRUE
  GEN_SCFMAN           TRUE
  SCF_GUESS            READ
  MAX_SCF_CYCLES       0
  N_FC_CVS_INACTIVE    10
  N_FROZEN_CORE        FC
  CVS_EE_SINGLETS      [50]
  CC_BACKEND           XM
  CC_SYMMETRY          FALSE
  CC_TRANS_PROP        1
  IQMOL_FCHK           TRUE
  THRESH               14
  MEM_TOTAL            32000
  MEM_STATIC           1000
$end

$basis
C    0
cc-pVDZ
****
O    0
cc-pVDZ
****
Fe    0
cc-pVDZ
****
$end

$aux_basis
C    0
RIMP2-cc-pVDZ
****
O    0
RIMP2-cc-pVDZ
****
Fe    0
RIMP2-cc-pVDZ
****
$end

--------------------------------------------------------------
 ----------------------------------------------------------------
             Standard Nuclear Orientation (Angstroms)
    I     Atom           X                Y                Z
 ----------------------------------------------------------------
    1      Fe      0.0000000000     0.0000000000     0.0000000000
    2      C       0.0000000000     0.0000000000     1.8487570000
    3      C      -0.0000000000     0.0000000000    -1.8487570000
    4      O       0.0000000000     0.0000000000     2.9929850000
    5      O      -0.0000000000     0.0000000000    -2.9929850000
 ----------------------------------------------------------------
 Nuclear Repulsion Energy =         228.55618302 hartrees
 There are       27 alpha and       27 beta electrons
 Requested basis set is non-standard
 There are 39 shells and 99 basis functions
 Total memory of 32000 MB is distributed as follows: 
   MEM_STATIC is set to 1000 MB
   QALLOC/CCMAN JOB total memory use is  31000 MB
 Warning: actual memory use might exceed 32000 MB

 Total QAlloc Memory Limit  32000 MB
 Mega-Array Size       978 MB
 MEM_STATIC part      1000 MB


                       Distance Matrix (Angstroms)
             Fe(  1)   C (  2)   C (  3)   O (  4)
   C (  2)  1.848757
   C (  3)  1.848757  3.697514
   O (  4)  2.992985  1.144228  4.841742
   O (  5)  2.992985  4.841742  1.144228  5.985970
 
 A cutoff of  1.0D-14 yielded    745 shell pairs
 There are      4933 function pairs (      6012 Cartesian)
 Smallest overlap matrix eigenvalue = 5.30E-04

 Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01

 Standard Electronic Orientation quadrupole field applied
 Nucleus-field energy     =    -0.0000000197 hartrees
 Guess MOs from SCF MO coefficient file

 -----------------------------------------------------------------------
  General SCF calculation program by
  Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
  David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
  Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
  Bang C. Huynh
 -----------------------------------------------------------------------
 Hartree-Fock
Skip SCF calculation as requested


 ------------------------------------------------------------------------------

   CCMAN2: suite of methods based on coupled cluster
           and equation of motion theories.

   Components:
   * libvmm-1.3-trunk
     by Evgeny Epifanovsky, Ilya Kaliman.
   * libtensor-2.5-trunk
     by Evgeny Epifanovsky, Michael Wormit, Dmitry Zuev, Sam Manzer, 
        Ilya Kaliman.
   * libcc-2.5-trunk
     by Evgeny Epifanovsky, Arik Landau, Tomasz Kus, Kirill Khistyaev, 
        Dmitry Zuev, Prashant Manohar, Xintian Feng, Anna Krylov, 
        Matthew Goldey, Alec White, Thomas Jagau, Kaushik Nanda, 
        Anastasia Gunina, Alexander Kunitsa, Joonho Lee.

   CCMAN original authors:
   Anna I. Krylov, C. David Sherrill, Steven R. Gwaltney,
   Edward F. C. Byrd (2000)
   Sergey V. Levchenko, Lyudmila V. Slipchenko, Tao Wang,
   Ana-Maria C. Cristian (2003)
   Piotr A. Pieniazek, C. Melania Oana, Evgeny Epifanovsky (2007)
   Prashant Manohar (2009)

 ------------------------------------------------------------------------------


 Calculation will run on 32 cores using libxm for tensor contractions

 ------------------------------------------------------------------------------
Libxm Tensor Library
Copyright (c) 2014-2018 Ilya Kaliman
https://github.com/ilyak/libxm
Reference: https://dx.doi.org/10.1002/jcc.24713
 ------------------------------------------------------------------------------


 Occupation and symmetry of molecular orbitals

 Point group: C1 (1 irreducible representation).

                                           A     All 
 -----------------------------------------------------
 All molecular orbitals:
  - Alpha                                  99    99  
  - Beta                                   99    99  
 -----------------------------------------------------
 Alpha orbitals:
  - Restricted/frozen occupied - layer 2   10    10  
  - Restricted/frozen occupied - layer 1   3     3   
  - Active occupied                        14    14  
  - Active virtual                         72    72  
  - Frozen virtual                         0     0   
 -----------------------------------------------------
 Beta orbitals:
  - Restricted/frozen occupied - layer 2   10    10  
  - Restricted/frozen occupied - layer 1   3     3   
  - Active occupied                        14    14  
  - Active virtual                         72    72  
  - Frozen virtual                         0     0   
 -----------------------------------------------------
 ***** Implemented option(s) for Restricted/frozen occupied layers 1 & 2:
 (1) Frozen-core CVS active & frozen-core CVS inactive

 Import integrals:   CPU 0.01 s  wall 0.00 s

 Import integrals:   CPU 107.61 s  wall 5.67 s


 MP2  CPU 5.33 s  wall 0.23 s
Running a double precision version
           CCSD T amplitudes will be solved using DIIS.

           Start     Size      MaxIter   EConv     TConv     
           3         7         100       1.00e-06  1.00e-04  
 ------------------------------------------------------------------------------
           Energy (a.u.)   Ediff      Tdiff       Comment
 ------------------------------------------------------------------------------
         -1490.06653437                           
     1   -1489.69176353   3.75e-01   5.24e-01     
     2   -1489.98231070   2.91e-01   4.43e-02     
     3   -1489.74784598   2.34e-01   3.80e-02     
     4   -1489.85714642   1.09e-01   6.89e-01     Switched to DIIS steps.
     5   -1489.86845656   1.13e-02   7.21e-02     
     6   -1489.87779907   9.34e-03   2.23e-02     
     7   -1489.87744805   3.51e-04   7.93e-03     
     8   -1489.87607367   1.37e-03   9.79e-03     
     9   -1489.87613449   6.08e-05   1.80e-03     
    10   -1489.87645608   3.22e-04   1.15e-03     
    11   -1489.87636108   9.50e-05   4.61e-04     
    12   -1489.87644686   8.58e-05   5.59e-04     
    13   -1489.87647764   3.08e-05   6.87e-04     
    14   -1489.87648875   1.11e-05   7.37e-04     
    15   -1489.87651694   2.82e-05   3.72e-04     
    16   -1489.87650892   8.02e-06   1.72e-04     
    17   -1489.87650715   1.77e-06   1.28e-04     
    18   -1489.87651393   6.78e-06   5.03e-05     
    19   -1489.87650781   6.12e-06   3.27e-05     
    20   -1489.87651238   4.57e-06   2.62e-05     
    21   -1489.87651094   1.44e-06   1.10e-05     
    22   -1489.87651129   3.50e-07   5.17e-06     
 ------------------------------------------------------------------------------
         -1489.87651129                           CCSD T converged.

 End of double precision
 SCF energy                 = -1488.90363916
 MP2 energy                 = -1490.08789443
 CCSD correlation energy    =    -0.97287213
 CCSD total energy          = -1489.87651129

 CCSD  T1^2 = 0.0075  T2^2 = 0.3389  Leading amplitudes:

 Amplitude    Orbitals with energies
  0.0344       24 (A) A                  ->    38 (A) A                   
              -0.5505                          0.2995                     
  0.0344       24 (A) B                  ->    38 (A) B                   
              -0.5505                          0.2995                     
  0.0341       26 (A) A                  ->    35 (A) A                   
              -0.4170                          0.1483                     
  0.0341       26 (A) B                  ->    35 (A) B                   
              -0.4170                          0.1483                     
  0.0341       25 (A) A                  ->    34 (A) A                   
              -0.4170                          0.1483                     
  0.0341       25 (A) B                  ->    34 (A) B                   
              -0.4170                          0.1483                     

 Amplitude    Orbitals with energies
 -0.0813       27 (A) A      27 (A) B    ->    36 (A) A      36 (A) B     
              -0.3379       -0.3379            0.1587        0.1587       
  0.0813       27 (A) A      27 (A) B    ->    36 (A) B      36 (A) A     
              -0.3379       -0.3379            0.1587        0.1587       
  0.0813       27 (A) B      27 (A) A    ->    36 (A) A      36 (A) B     
              -0.3379       -0.3379            0.1587        0.1587       
 -0.0813       27 (A) B      27 (A) A    ->    36 (A) B      36 (A) A     
              -0.3379       -0.3379            0.1587        0.1587       

 Computing CCSD intermediates for later calculations in double precision
 Finished.

Running a double precision version
           CCSD Lambda amplitudes will be solved using DIIS.
           Start     Size      MaxIter   EConv     LConv     
           3         7         100       1.00e-06  1.00e-04  
 ------------------------------------------------------------------------------
            Enorm      Ldiff       Comment
 ------------------------------------------------------------------------------
     1     9.16e-02   3.93e-02     
     2     3.89e-02   1.33e-02     
     3     2.22e-02   4.43e-03     
     4     1.51e-02   6.30e-03     Switched to DIIS steps.
     5     4.99e-03   5.12e-04     
     6     2.46e-03   5.21e-04     
     7     1.30e-03   1.19e-05     
     8     7.02e-04   1.91e-04     
     9     3.52e-04   7.02e-06     
    10     2.38e-04   3.63e-05     
    11     1.61e-04   3.02e-05     
    12     1.08e-04   3.59e-05     
    13     8.31e-05   3.44e-05     
    14     7.00e-05   1.84e-05     
    15     5.70e-05   2.27e-05     
    16     4.13e-05   2.51e-05     
    17     2.48e-05   2.89e-05     
    18     1.49e-05   9.49e-06     
    19     8.19e-06   8.65e-06     
    20     4.35e-06   1.29e-06     
    21     2.82e-06   7.18e-07     
    22     1.96e-06   1.05e-07     
    23     1.33e-06   1.69e-07     
    24     9.01e-07   2.10e-07     
 ------------------------------------------------------------------------------
                                   CCSD Lambda converged.


 CCSD  CPU 3063.53 s  wall 135.78 s

Job 3, part 2: EOM-CCSD R amplitudes:

        Solving for CVS-EOMEE-CCSD A singlet states.

Running a double precision version
        CVS-EOMEE-CCSD/MP2 right amplitudes will be solved using Davidson.
        Amplitudes will be solved using standard  algorithm.
     Hard-coded thresholds: 
     LinDepThresh=1.00e-15  NormThresh=1.00e-06  ReorthogonThresh=1.00e-02

      Roots     MaxVec    MaxIter   Precond   Conv      Shift    
      50        120       60        1         1.00e-05  0.00e+00  
 ------------------------------------------------------------------------------
      Iter ConvRoots NVecs ResNorm^2 Current eigenvalues (eV)
 ------------------------------------------------------------------------------
      0    0      50    6.28e-01   58.4704   61.6027   61.6027   66.9920   66.9985   67.0649   67.0649   67.1128   67.5457   68.4995   68.4995   68.6483   68.9426   68.9576   68.9601   70.5676   70.5676   71.8172   71.9130   71.9130   72.0644   72.1264   72.1277   72.1359   72.1367   72.1367   72.1560   72.2342   72.2342   72.8767   73.8534   74.1285   74.1285   74.6415   75.0100   75.0145   75.0734   75.0734   75.1072   75.1346   75.1346   75.1929   79.2312   79.2312   79.3569   79.3937   79.3967   79.4150   79.4150   79.4618   
      1    0      100   1.65e-01   55.0408   58.0180   58.0180   59.0626   59.0626   59.6054   59.6664   59.7849   59.9618   62.3292   62.4780   62.4780   62.5812   62.6009   62.6293   63.5364   63.5364   63.7023   63.7198   63.7198   63.9186   64.0614   64.1340   64.1427   64.1617   64.1617   64.1751   65.2208   65.2208   66.1023   66.6771   66.6771   66.7146   66.9187   67.1131   67.1736   67.2208   67.2208   67.2903   67.4070   68.6133   68.6133   70.8955   70.8955   71.3378   71.3552   71.3914   71.4306   71.6339   71.6339   
      2    0      120   1.02e-01   52.6351   55.7633   55.7633   56.0787   56.0787   56.7386   56.8378   56.8755   57.1731   59.2574   59.3964   59.3964   59.6154   59.6168   59.7098   60.5672   60.5672   60.6903   60.6903   60.7459   63.9184   64.0552   64.1291   64.1374   64.1617   64.1617   64.1703   65.1600   65.1600   66.1013   66.6536   66.6536   66.7146   66.8516   67.0826   67.1339   67.2083   67.2083   67.2589   67.3665   68.4289   68.4289   70.8919   70.8919   71.3243   71.3408   71.3856   71.4146   71.6338   71.6338   
      3    0      100   1.46e-02   52.4802   55.5584   55.5584   56.2501   56.2501   56.9407   57.0505   57.1000   57.3591   59.3196   59.4159   59.4159   59.6558   59.6628   59.7597   60.7622   60.7622   60.7743   60.8261   60.8261   60.9530   61.0947   61.1349   61.1439   61.1608   61.2376   61.2376   62.1613   62.1613   62.3502   63.5472   63.5472   63.7104   63.9910   64.0845   64.1854   64.2461   64.3776   64.3776   64.5196   65.7622   65.7622   67.8094   67.8094   68.3455   68.3693   68.4114   68.4230   68.6483   68.6483   
      4    0      120   3.16e-02   52.2422   54.7826   54.7826   55.9827   55.9827   56.4312   56.5472   56.5774   56.9003   58.9869   59.0328   59.0328   59.2250   59.2264   59.2779   60.2096   60.2096   60.4526   60.4526   60.9187   60.9530   61.0954   61.1350   61.1443   61.1606   61.2376   61.2376   62.1553   62.1553   62.3491   63.5605   63.5605   63.7102   64.0455   64.0887   64.1935   64.2468   64.4363   64.4363   64.5207   64.5207   64.5236   66.0304   66.0304   67.8372   67.8372   68.2981   68.3490   68.4128   68.4272   
      5    0      100   7.87e-03   52.2457   54.4979   54.4979   56.0203   56.0203   56.4880   56.6005   56.6353   56.9731   58.9562   58.9562   59.0088   59.2359   59.2390   59.2843   60.0192   60.0192   60.5032   60.5032   60.5574   60.5671   61.1471   61.1471   61.4525   61.5023   61.5163   61.5350   61.6240   61.6240   62.4061   62.4061   62.5142   63.7817   63.7817   63.9448   64.0745   64.3353   64.4753   64.4843   64.6905   64.6905   64.8271   66.1583   66.1583   66.4584   68.0913   68.0913   68.6448   68.7153   68.7354   
Found complex roots...
      6    0      120   1.75e-02   52.2084   54.2684   54.2684   55.9601   55.9601   56.2825   56.3796   56.4566   56.7768   58.8471   58.8471   58.9163   58.9512   59.0480   59.1061   59.5300   59.5300   60.4405   60.4405   60.5670   60.6396   60.6396   60.6762   61.4513   61.5000   61.5151   61.5317   61.6239   61.6239   62.3354   62.3354   62.4868   63.7954   63.7954   63.9446   64.1161   64.3620   64.4909   64.4919   64.6624   64.6624   64.8322   65.1251   65.9070   65.9070   68.0235   68.0824   68.0824   68.6375   68.7207   
      7    0      100   5.20e-03   52.2131   54.2525   54.2525   55.9901   55.9901   56.3982   56.5028   56.5605   56.8890   58.8126   58.8126   58.9587   58.9845   59.1438   59.1710   59.4359   59.4359   60.4713   60.4713   60.5219   60.5368   60.5368   60.7168   60.8883   60.9210   60.9389   60.9444   61.0382   61.0382   61.7185   61.7225   61.7225   61.8643   63.4360   63.4360   63.5952   63.6770   63.7179   63.7337   63.9501   64.1200   64.1200   64.1736   64.3031   65.2469   65.2469   67.6102   67.6563   67.6563   68.1020   
Found complex roots...
      8    1      120   1.34e-02   52.2079*  54.2314   54.2314   55.9785   55.9785   56.3392   56.4396   56.5086   56.8229   58.4125   58.8025   58.8025   58.9370   59.0455   59.1386   59.3151   59.3151   60.2701   60.4577   60.4577   60.5256   60.5256   60.6037   60.7168   60.8829   60.9117   60.9329   60.9344   61.0378   61.0378   61.7141   61.7141   61.7187   63.4444   63.4444   63.5867   63.6302   63.6446   63.7771   63.7771   63.9569   64.0944   64.0944   64.3083   65.0575   65.0575   65.9135   67.6209   67.6209   67.9815   
Vector=39 Small norm=0.0000!
Root= 39 Small norm=0.0000!
      9    5      98    5.54e-02   0.2979   52.2090*  54.2290   54.2290   55.9835*  55.9835*  56.3635   56.4645   56.5303   56.8535   57.9185   58.7818   58.7818   58.9467   59.0245   59.1493   59.3077   59.3077   59.5495   60.4446   60.4446   60.4644*  60.4644*  60.5153   60.5698   61.1297   61.1358   61.1676   61.1924   61.1931   61.3078   61.3078   61.8286   61.8565   61.8565   63.5691   63.5691   63.5774   63.6419   63.7429   64.1634   64.2969   64.2969   64.5172   65.1899   65.1899   67.7748   67.7748   68.1712   87.7856   
      10   5      120   1.75e-02   0.0072   52.2089*  54.2222   54.2222   55.9835*  55.9835*  56.3012   56.4004   56.4771   56.7810   56.9517   58.0512   58.7771   58.7771   58.9263   59.1199   59.2356   59.2356   59.5320   59.7943   60.4527   60.4527   60.4644*  60.4644*  60.5862   60.6010   60.8975   61.1663   61.1914   61.1916   61.3078   61.3078   61.8136   61.8502   61.8502   63.5600   63.5691   63.5691   63.6540   63.7378   64.1660   64.2811   64.2811   64.5249   65.0305   65.0305   67.0730   67.0730   67.2013   67.9470   
      11   7      95    1.95e-02   52.2087*  54.2248*  54.2248*  55.9835*  55.9835*  56.3458   56.4462   56.5165   56.6959   56.8338   56.9422   58.7767   58.7767   58.9411   59.1416   59.1864   59.2604   59.2604   59.2995   60.4295   60.4295   60.4643*  60.4643*  60.5093   60.5884   60.8548   60.8691   60.8741   60.8853   60.9890   60.9890   61.5933   61.6199   61.6199   62.6102   62.8053   63.4571   63.4571   63.6122   63.9016   64.0123   64.0123   64.2253   64.4461   64.4461   65.4164   65.8172   65.8172   66.6861   72.8982   

Some iterations later…

      55   30     102   5.51e-03   0.0014   0.0044   0.0422   52.2078*  55.7869*  55.9798*  55.9817   56.3322*  56.4328*  56.5042*  56.5799*  56.8135*  58.7759   58.8162   58.9371*  59.0002*  59.0023   59.0150   59.1342*  59.1473*  59.2296*  59.2301   59.2858*  59.4799*  59.5935*  59.9014   60.1332   60.1565   60.3482   60.3765   60.4237*  60.4252*  60.4911   60.5264*  60.5734*  60.5973*  60.7057*  60.7564*  60.8285*  60.9402   60.9495*  60.9942*  61.0945*  61.0998   61.1676*  61.2660*  61.5462*  62.5172   63.5255   65.3885   
Found complex roots...
      56   30     120   2.65e-03   0.0000*  0.0001   0.0016   52.2078*  55.7869*  55.9797*  55.9816   56.3322*  56.4328*  56.5042*  56.5799*  56.8135*  58.7759   58.8161   58.9371*  58.9986   59.0002*  59.0024   59.1342*  59.1474*  59.2299   59.2299   59.2858*  59.4799*  59.5934*  59.9002   60.1328   60.1529   60.3427   60.3759   60.4234*  60.4252*  60.4860   60.5264*  60.5717*  60.5974*  60.7058*  60.7564*  60.8285*  60.9332   60.9513*  60.9940*  61.0793   61.0941*  61.1678*  61.2104   61.2660*  61.5459*  61.6107   63.4477   
Vector=21 Small norm=0.0000!
Root= 21 Small norm=0.0000!
      57   26     69    3.46e-02   3.7708   52.2078*  55.7869*  55.9798*  55.9809   56.3322*  56.4327*  56.5042*  56.5799*  56.7060   56.8135*  58.7812   58.7869   58.9370*  58.9883   58.9997   59.0003   59.1343*  59.1474*  59.2858*  59.4799*  59.5933*  59.8997   60.1325   60.1434   60.3408   60.3756*  60.4222   60.4234   60.4718   60.5264*  60.5720*  60.5974*  60.6877   60.7059*  60.7564*  60.8285*  60.9026   60.9305   60.9516*  60.9956   61.0863   61.0941*  61.1679*  61.2660*  61.5462*  61.7975   62.4505   64.6519   73.6075   
      58   28     93    6.87e-03   0.1061   52.2078*  54.2684   55.7869*  55.9796*  55.9797*  56.3322*  56.4328*  56.5042*  56.5799*  56.8135*  57.5945   58.7748   58.7777   58.9370*  58.9682   58.9994*  58.9995*  59.1343*  59.1474*  59.2858*  59.4799*  59.5933*  59.8993   60.0777   60.1321   60.1498   60.3378   60.3754   60.4234*  60.4236   60.4565   60.5264*  60.5725*  60.5972*  60.7062*  60.7564*  60.8285*  60.8579   60.9257   60.9511*  60.9955*  61.0717   61.0944   61.1676   61.2077   61.2660*  61.5461*  61.6507   62.3078   
Found complex roots...
      59   37     115   1.17e-03   0.0032   52.2078*  54.2363   55.0081   55.7869*  55.9797*  55.9800*  56.3322*  56.4328*  56.5042*  56.5799*  56.8135*  58.7765*  58.7765*  58.9371*  58.9486   58.9994*  58.9994*  59.1343*  59.1473*  59.2858*  59.4799*  59.5933*  59.7924   59.8990*  60.1319*  60.1393   60.3353   60.3752*  60.4235*  60.4236*  60.4632   60.5263*  60.5734*  60.5971*  60.6511   60.7062*  60.7558*  60.8285*  60.9209   60.9498*  60.9962*  60.9962*  61.0238   61.0935*  61.1683*  61.2660*  61.4828   61.5461*  61.6257   

     Max Davidson iteration exhausted

 CVS-EOMEE transition 1/A
 Total energy = -1489.87639523 a.u.  Excitation energy = 0.0032 eV.
 R0^2 = 0.0000  R1^2 = 0.0000  R2_CCVV^2 = 0.0000  R2_COVV^2 = 0.0000  Res^2 = 4.78e-04
 Conv-d = no

 Amplitude    Transitions between orbitals


 CVS-EOMEE transition 2/A
 Total energy = -1487.95791084 a.u.  Excitation energy = 52.2078 eV.
 R0^2 = 0.0000  R1^2 = 0.8015  R2_CCVV^2 = 0.0035  R2_COVV^2 = 0.0975  Res^2 = 1.56e-06
 Conv-d = yes

 Amplitude    Transitions between orbitals
  0.5706       11 (A) A                  ->    36 (A) A                   
  0.5706       11 (A) B                  ->    36 (A) B                   
 -0.2672       11 (A) A                  ->    41 (A) A                   
 -0.2672       11 (A) B                  ->    41 (A) B                   

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               11      Occ  Alpha      11 (A)     -2.7351
               11      Occ  Beta       11 (A)     -2.7351
               36      Vir  Alpha      36 (A)      0.1587
               41      Vir  Alpha      41 (A)      0.3649
               36      Vir  Beta       36 (A)      0.1587
               41      Vir  Beta       41 (A)      0.3649


 CVS-EOMEE transition 3/A
 Total energy = -1487.88336471 a.u.  Excitation energy = 54.2363 eV.
 R0^2 = 0.0000  R1^2 = 0.5579  R2_CCVV^2 = 0.0024  R2_COVV^2 = 0.2199  Res^2 = 6.70e-04
 Conv-d = no

 Amplitude    Transitions between orbitals
 -0.3273       13 (A) A                  ->    36 (A) A                   
 -0.3273       13 (A) B                  ->    36 (A) B                   
  0.3154       12 (A) A                  ->    36 (A) A                   
  0.3154       12 (A) B                  ->    36 (A) B                   
  0.1520       11 (A) A                  ->    34 (A) A                   
  0.1520       11 (A) B                  ->    34 (A) B                   
  0.1260       13 (A) A                  ->    41 (A) A                   
  0.1260       13 (A) B                  ->    41 (A) B                   
 -0.1190       12 (A) A                  ->    41 (A) A                   
 -0.1190       12 (A) B                  ->    41 (A) B                   

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               11      Occ  Alpha      11 (A)     -2.7351
               12      Occ  Alpha      12 (A)     -2.7334
               13      Occ  Alpha      13 (A)     -2.7334
               11      Occ  Beta       11 (A)     -2.7351
               12      Occ  Beta       12 (A)     -2.7334
               13      Occ  Beta       13 (A)     -2.7334
               34      Vir  Alpha      34 (A)      0.1483
               36      Vir  Alpha      36 (A)      0.1587
               41      Vir  Alpha      41 (A)      0.3649
               34      Vir  Beta       34 (A)      0.1483
               36      Vir  Beta       36 (A)      0.1587
               41      Vir  Beta       41 (A)      0.3649


 CVS-EOMEE transition 4/A
 Total energy = -1487.85500115 a.u.  Excitation energy = 55.0081 eV.
 R0^2 = 0.0000  R1^2 = 0.6525  R2_CCVV^2 = 0.0024  R2_COVV^2 = 0.1726  Res^2 = 3.30e-02
 Conv-d = no

 Amplitude    Transitions between orbitals
  0.3543       12 (A) A                  ->    36 (A) A                   
  0.3543       12 (A) B                  ->    36 (A) B                   
  0.3298       13 (A) A                  ->    36 (A) A                   
  0.3298       13 (A) B                  ->    36 (A) B                   
  0.1529       11 (A) A                  ->    35 (A) A                   
  0.1529       11 (A) B                  ->    35 (A) B                   
 -0.1438       12 (A) A                  ->    41 (A) A                   
 -0.1438       12 (A) B                  ->    41 (A) B                   
 -0.1095       13 (A) A                  ->    41 (A) A                   
 -0.1095       13 (A) B                  ->    41 (A) B                   
  0.1086       13 (A) A                  ->    30 (A) A                   
  0.1086       13 (A) B                  ->    30 (A) B                   

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               11      Occ  Alpha      11 (A)     -2.7351
               12      Occ  Alpha      12 (A)     -2.7334
               13      Occ  Alpha      13 (A)     -2.7334
               11      Occ  Beta       11 (A)     -2.7351
               12      Occ  Beta       12 (A)     -2.7334
               13      Occ  Beta       13 (A)     -2.7334
               30      Vir  Alpha      30 (A)      0.0868
               35      Vir  Alpha      35 (A)      0.1483
               36      Vir  Alpha      36 (A)      0.1587
               41      Vir  Alpha      41 (A)      0.3649
               30      Vir  Beta       30 (A)      0.0868
               35      Vir  Beta       35 (A)      0.1483
               36      Vir  Beta       36 (A)      0.1587
               41      Vir  Beta       41 (A)      0.3649


 CVS-EOMEE transition 5/A
 Total energy = -1487.82637988 a.u.  Excitation energy = 55.7869 eV.
 R0^2 = 0.0000  R1^2 = 0.0038  R2_CCVV^2 = 0.0005  R2_COVV^2 = 0.4979  Res^2 = 1.90e-07
 Conv-d = yes

 Amplitude    Transitions between orbitals
 -0.4427       11 (A) A      24 (A) B    ->    36 (A) A      36 (A) B     
  0.4427       11 (A) A      24 (A) B    ->    36 (A) B      36 (A) A     
  0.4427       11 (A) B      24 (A) A    ->    36 (A) A      36 (A) B     
 -0.4427       11 (A) B      24 (A) A    ->    36 (A) B      36 (A) A     
  0.2420       11 (A) A      24 (A) B    ->    41 (A) A      36 (A) B     
 -0.2420       11 (A) A      24 (A) B    ->    36 (A) B      41 (A) A     
 -0.2420       11 (A) B      24 (A) A    ->    36 (A) A      41 (A) B     
  0.2420       11 (A) B      24 (A) A    ->    41 (A) B      36 (A) A     
  0.2409       11 (A) A      24 (A) B    ->    36 (A) A      41 (A) B     
 -0.2409       11 (A) A      24 (A) B    ->    41 (A) B      36 (A) A     
 -0.2409       11 (A) B      24 (A) A    ->    41 (A) A      36 (A) B     
  0.2409       11 (A) B      24 (A) A    ->    36 (A) B      41 (A) A     
 -0.1801       13 (A) A      26 (A) B    ->    36 (A) A      36 (A) B     
  0.1801       13 (A) A      26 (A) B    ->    36 (A) B      36 (A) A     
  0.1801       13 (A) B      26 (A) A    ->    36 (A) A      36 (A) B     
 -0.1801       13 (A) B      26 (A) A    ->    36 (A) B      36 (A) A     
 -0.1799       12 (A) A      25 (A) B    ->    36 (A) A      36 (A) B     
  0.1799       12 (A) A      25 (A) B    ->    36 (A) B      36 (A) A     
  0.1799       12 (A) B      25 (A) A    ->    36 (A) A      36 (A) B     
 -0.1799       12 (A) B      25 (A) A    ->    36 (A) B      36 (A) A     
  0.1212       12 (A) A      26 (A) B    ->    36 (A) A      36 (A) B     
 -0.1212       12 (A) A      26 (A) B    ->    36 (A) B      36 (A) A     
 -0.1212       12 (A) B      26 (A) A    ->    36 (A) A      36 (A) B     
  0.1212       12 (A) B      26 (A) A    ->    36 (A) B      36 (A) A     
 -0.1212       13 (A) A      25 (A) B    ->    36 (A) A      36 (A) B     
  0.1212       13 (A) A      25 (A) B    ->    36 (A) B      36 (A) A     
  0.1212       13 (A) B      25 (A) A    ->    36 (A) A      36 (A) B     
 -0.1212       13 (A) B      25 (A) A    ->    36 (A) B      36 (A) A     
 -0.1193       11 (A) A      24 (A) B    ->    41 (A) A      41 (A) B     
  0.1193       11 (A) A      24 (A) B    ->    41 (A) B      41 (A) A     
  0.1193       11 (A) B      24 (A) A    ->    41 (A) A      41 (A) B     
 -0.1193       11 (A) B      24 (A) A    ->    41 (A) B      41 (A) A     

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               11      Occ  Alpha      11 (A)     -2.7351
               12      Occ  Alpha      12 (A)     -2.7334
               13      Occ  Alpha      13 (A)     -2.7334
               11      Occ  Beta       11 (A)     -2.7351
               12      Occ  Beta       12 (A)     -2.7334
               13      Occ  Beta       13 (A)     -2.7334
               24      Occ  Alpha      24 (A)     -0.5505
               25      Occ  Alpha      25 (A)     -0.4170
               26      Occ  Alpha      26 (A)     -0.4170
               24      Occ  Beta       24 (A)     -0.5505
               25      Occ  Beta       25 (A)     -0.4170
               26      Occ  Beta       26 (A)     -0.4170
               36      Vir  Alpha      36 (A)      0.1587
               41      Vir  Alpha      41 (A)      0.3649
               36      Vir  Beta       36 (A)      0.1587
               41      Vir  Beta       41 (A)      0.3649


 CVS-EOMEE transition 6/A
 Total energy = -1487.81929491 a.u.  Excitation energy = 55.9797 eV.
 R0^2 = 0.0000  R1^2 = 0.8148  R2_CCVV^2 = 0.0034  R2_COVV^2 = 0.0909  Res^2 = 2.50e-07
 Conv-d = yes

 Amplitude    Transitions between orbitals
 -0.5734       11 (A) A                  ->    29 (A) A                   
 -0.5734       11 (A) B                  ->    29 (A) B                   
  0.2092       11 (A) A                  ->    28 (A) A                   
  0.2092       11 (A) B                  ->    28 (A) B                   
  0.1557       11 (A) A                  ->    33 (A) A                   
  0.1557       11 (A) B                  ->    33 (A) B                   

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               11      Occ  Alpha      11 (A)     -2.7351
               11      Occ  Beta       11 (A)     -2.7351
               28      Vir  Alpha      28 (A)      0.0211
               29      Vir  Alpha      29 (A)      0.0211
               33      Vir  Alpha      33 (A)      0.1376
               28      Vir  Beta       28 (A)      0.0211
               29      Vir  Beta       29 (A)      0.0211
               33      Vir  Beta       33 (A)      0.1376


 CVS-EOMEE transition 7/A
 Total energy = -1487.81928566 a.u.  Excitation energy = 55.9800 eV.
 R0^2 = 0.0000  R1^2 = 0.8149  R2_CCVV^2 = 0.0034  R2_COVV^2 = 0.0908  Res^2 = 2.80e-07
 Conv-d = yes

 Amplitude    Transitions between orbitals
  0.5062       11 (A) A                  ->    28 (A) A                   
  0.5062       11 (A) B                  ->    28 (A) B                   
  0.3411       11 (A) A                  ->    29 (A) A                   
  0.3411       11 (A) B                  ->    29 (A) B                   
 -0.1374       11 (A) A                  ->    32 (A) A                   
 -0.1374       11 (A) B                  ->    32 (A) B                   

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               11      Occ  Alpha      11 (A)     -2.7351
               11      Occ  Beta       11 (A)     -2.7351
               28      Vir  Alpha      28 (A)      0.0211
               29      Vir  Alpha      29 (A)      0.0211
               32      Vir  Alpha      32 (A)      0.1376
               28      Vir  Beta       28 (A)      0.0211
               29      Vir  Beta       29 (A)      0.0211
               32      Vir  Beta       32 (A)      0.1376


 CVS-EOMEE transition 8/A
 Total energy = -1487.80633947 a.u.  Excitation energy = 56.3322 eV.
 R0^2 = 0.0000  R1^2 = 0.7553  R2_CCVV^2 = 0.0033  R2_COVV^2 = 0.1207  Res^2 = 2.30e-08
 Conv-d = yes

 Amplitude    Transitions between orbitals
  0.3447       12 (A) A                  ->    28 (A) A                   
  0.3447       12 (A) B                  ->    28 (A) B                   
  0.3447       13 (A) A                  ->    29 (A) A                   
  0.3447       13 (A) B                  ->    29 (A) B                   
 -0.2323       12 (A) A                  ->    29 (A) A                   
 -0.2323       12 (A) B                  ->    29 (A) B                   
  0.2320       13 (A) A                  ->    28 (A) A                   
  0.2320       13 (A) B                  ->    28 (A) B                   

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               12      Occ  Alpha      12 (A)     -2.7334
               13      Occ  Alpha      13 (A)     -2.7334
               12      Occ  Beta       12 (A)     -2.7334
               13      Occ  Beta       13 (A)     -2.7334
               28      Vir  Alpha      28 (A)      0.0211
               29      Vir  Alpha      29 (A)      0.0211
               28      Vir  Beta       28 (A)      0.0211
               29      Vir  Beta       29 (A)      0.0211


 CVS-EOMEE transition 9/A
 Total energy = -1487.80264392 a.u.  Excitation energy = 56.4328 eV.
 R0^2 = 0.0000  R1^2 = 0.7432  R2_CCVV^2 = 0.0032  R2_COVV^2 = 0.1268  Res^2 = 2.02e-08
 Conv-d = yes

 Amplitude    Transitions between orbitals
 -0.4132       12 (A) A                  ->    29 (A) A                   
 -0.4132       12 (A) B                  ->    29 (A) B                   
 -0.4132       13 (A) A                  ->    28 (A) A                   
 -0.4132       13 (A) B                  ->    28 (A) B                   
  0.1056       12 (A) A                  ->    33 (A) A                   
  0.1056       12 (A) B                  ->    33 (A) B                   
  0.1056       13 (A) A                  ->    32 (A) A                   
  0.1056       13 (A) B                  ->    32 (A) B                   

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               12      Occ  Alpha      12 (A)     -2.7334
               13      Occ  Alpha      13 (A)     -2.7334
               12      Occ  Beta       12 (A)     -2.7334
               13      Occ  Beta       13 (A)     -2.7334
               28      Vir  Alpha      28 (A)      0.0211
               29      Vir  Alpha      29 (A)      0.0211
               32      Vir  Alpha      32 (A)      0.1376
               33      Vir  Alpha      33 (A)      0.1376
               28      Vir  Beta       28 (A)      0.0211
               29      Vir  Beta       29 (A)      0.0211
               32      Vir  Beta       32 (A)      0.1376
               33      Vir  Beta       33 (A)      0.1376


 CVS-EOMEE transition 10/A
 Total energy = -1487.80002029 a.u.  Excitation energy = 56.5042 eV.
 R0^2 = 0.0000  R1^2 = 0.7788  R2_CCVV^2 = 0.0033  R2_COVV^2 = 0.1089  Res^2 = 1.50e-07
 Conv-d = yes

 Amplitude    Transitions between orbitals
  0.3509       13 (A) A                  ->    28 (A) A                   
  0.3509       13 (A) B                  ->    28 (A) B                   
 -0.3509       12 (A) A                  ->    29 (A) A                   
 -0.3509       12 (A) B                  ->    29 (A) B                   
 -0.2363       12 (A) A                  ->    28 (A) A                   
 -0.2363       12 (A) B                  ->    28 (A) B                   
 -0.2363       13 (A) A                  ->    29 (A) A                   
 -0.2363       13 (A) B                  ->    29 (A) B                   

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               12      Occ  Alpha      12 (A)     -2.7334
               13      Occ  Alpha      13 (A)     -2.7334
               12      Occ  Beta       12 (A)     -2.7334
               13      Occ  Beta       13 (A)     -2.7334
               28      Vir  Alpha      28 (A)      0.0211
               29      Vir  Alpha      29 (A)      0.0211
               28      Vir  Beta       28 (A)      0.0211
               29      Vir  Beta       29 (A)      0.0211


 CVS-EOMEE transition 11/A
 Total energy = -1487.79723988 a.u.  Excitation energy = 56.5799 eV.
 R0^2 = 0.0000  R1^2 = 0.0206  R2_CCVV^2 = 0.0005  R2_COVV^2 = 0.4894  Res^2 = 1.66e-07
 Conv-d = yes

 Amplitude    Transitions between orbitals
 -0.3805       13 (A) A      25 (A) B    ->    36 (A) A      36 (A) B     
  0.3805       13 (A) A      25 (A) B    ->    36 (A) B      36 (A) A     
  0.3805       13 (A) B      25 (A) A    ->    36 (A) A      36 (A) B     
 -0.3805       13 (A) B      25 (A) A    ->    36 (A) B      36 (A) A     
 -0.3804       12 (A) A      26 (A) B    ->    36 (A) A      36 (A) B     
  0.3804       12 (A) A      26 (A) B    ->    36 (A) B      36 (A) A     
  0.3804       12 (A) B      26 (A) A    ->    36 (A) A      36 (A) B     
 -0.3804       12 (A) B      26 (A) A    ->    36 (A) B      36 (A) A     
  0.2008       12 (A) A      26 (A) B    ->    36 (A) A      41 (A) B     
 -0.2008       12 (A) A      26 (A) B    ->    41 (A) B      36 (A) A     
 -0.2008       12 (A) B      26 (A) A    ->    41 (A) A      36 (A) B     
  0.2008       12 (A) B      26 (A) A    ->    36 (A) B      41 (A) A     
  0.2008       13 (A) A      25 (A) B    ->    36 (A) A      41 (A) B     
 -0.2008       13 (A) A      25 (A) B    ->    41 (A) B      36 (A) A     
 -0.2008       13 (A) B      25 (A) A    ->    41 (A) A      36 (A) B     
  0.2008       13 (A) B      25 (A) A    ->    36 (A) B      41 (A) A     
  0.1826       13 (A) A      25 (A) B    ->    41 (A) A      36 (A) B     
 -0.1826       13 (A) A      25 (A) B    ->    36 (A) B      41 (A) A     
 -0.1826       13 (A) B      25 (A) A    ->    36 (A) A      41 (A) B     
  0.1826       13 (A) B      25 (A) A    ->    41 (A) B      36 (A) A     
  0.1826       12 (A) A      26 (A) B    ->    41 (A) A      36 (A) B     
 -0.1826       12 (A) A      26 (A) B    ->    36 (A) B      41 (A) A     
 -0.1826       12 (A) B      26 (A) A    ->    36 (A) A      41 (A) B     
  0.1826       12 (A) B      26 (A) A    ->    41 (A) B      36 (A) A     

              Summary of significant orbitals:

               Number  Type             Irrep      Energy
               12      Occ  Alpha      12 (A)     -2.7334
               13      Occ  Alpha      13 (A)     -2.7334
               12      Occ  Beta       12 (A)     -2.7334
               13      Occ  Beta       13 (A)     -2.7334
               25      Occ  Alpha      25 (A)     -0.4170
               26      Occ  Alpha      26 (A)     -0.4170
               25      Occ  Beta       25 (A)     -0.4170
               26      Occ  Beta       26 (A)     -0.4170
               36      Vir  Alpha      36 (A)      0.1587
               41      Vir  Alpha      41 (A)      0.3649
               36      Vir  Beta       36 (A)      0.1587
               41      Vir  Beta       41 (A)      0.3649

and more transitions…

Job 3, part 3: EOM-CCSD L amplitudes. I understand they are probably nonsense, since most EOM-CCSD states didnt converge and there is some strange states, but in case it helps trouble shoot:

      CVS-EOM-CCSD/MP2 left amplitudes will be solved using Davidson.
        Amplitudes will be solved using MOM  algorithm.
     Hard-coded thresholds: 
     LinDepThresh=1.00e-15  NormThresh=1.00e-06  ReorthogonThresh=1.00e-02

      Roots     MaxVec    MaxIter   Precond   Conv      Shift    
      50        120       60        1         1.00e-05  0.00e+00  
Root= 13 Small norm=2.82e-16!
Root= 42 Small norm=5.35e-16!
 ------------------------------------------------------------------------------
      Iter ConvRoots NVecs ResNorm^2 Current eigenvalues (eV)
 ------------------------------------------------------------------------------
      0    0      50    4.99e-01   98.9843   52.2078   54.2564   55.0014   55.7869   55.9797   55.9800   56.3322   56.4328   56.5042   56.5799   56.8135   1.8780   116.5658   58.9371   58.9486   58.9994   58.9994   59.1343   59.1473   59.2858   59.4799   59.5933   59.7922   59.8990   60.1319   60.1392   60.3353   60.3752   60.4233   60.4237   60.4631   60.5263   60.5734   60.5971   60.6506   60.7063   60.7558   60.8285   60.9209   60.9498   1.1584   122.1824   61.0232   61.0935   61.1683   61.2660   61.4812   61.5461   61.6259   
      1    0      100   2.37e-01   78.7258   52.2077   54.2522   54.7204   55.7869   55.9798   55.9799   56.3323   56.4327   56.5041   56.5799   56.8133   0.2225   118.5293   58.9371   58.9452   58.9994   58.9994   59.1343   59.1473   59.2859   59.4799   59.5933   59.7544   59.8989   60.1318   60.1373   60.3348   60.3751   60.4235   60.4231   60.4646   60.5263   60.5729   60.5972   60.5805   60.7061   60.7558   60.8288   60.9192   60.9503   0.1091   60.9901   61.0934   61.1680   61.2655   61.3755   61.5462   61.6120   122.6544   
Found complex roots...
      2    0      120   2.25e-01   79.0907   52.2075   54.2473   54.5290   55.7869   55.9798   55.9798   56.3323   56.4328   56.5042   56.5799   56.8132   0.0047   58.9372   58.9422   58.9994   58.9994   59.1343   59.1473   59.2859   59.4799   59.5933   59.7290   59.8989   60.1318   60.1368   60.3348   60.3751   60.4231   60.4235   60.4645   60.5263   60.5729   60.5972   60.5737   60.7061   60.7558   60.8288   60.9192   60.9503   0.1077   60.9850   61.0934   61.1680   61.2655   61.3675   61.5462   61.6114   117.4798   122.6491   
      3    2      100   2.21e-01   74.4843   54.2282   54.3294   55.9844   55.9857   56.3252   56.4246   56.4986   56.5782   56.8091   58.9253   58.9394   58.9991*  58.9991*  59.1232   59.1388   59.2492   59.4794   59.5929   59.6981   59.8981   60.1311   60.1336   60.3331   60.3746   60.3929   60.3781   60.4049   60.4807   60.5661   60.5454   60.4679   60.6861   60.7315   60.7976   60.9165   60.9174   66.8704   67.2381   60.9244   61.0746   61.1523   61.2569   61.2722   61.4957   61.5531   77.6271   142.5311   141.9326   78.7076   
Found complex roots...
      4    6      120   3.12e-02   52.1907   54.2273   54.2506   55.7854   55.9669   55.9656   56.3250   56.4269   56.4927   56.5790*  56.8024   63.6041   58.9320   58.9364   58.9991*  58.9991*  59.1279   59.1408   59.3092   59.4800*  59.5934*  59.6600   59.8990   60.1318*  60.1330   60.3330   60.3746   60.4359   60.3783   60.4127   60.4852   60.4861   60.5659   60.5457   60.6870   60.7320   60.7988   60.9162   60.9200   67.5557   60.9025   61.0740   61.0740   61.1549   61.2566   61.2736   61.4972   61.5543   65.9861   64.5333   
Vector=42 Small norm=0.0000!
Root= 42 Small norm=0.0000!
Found complex roots...
      5    12     93    2.38e-01   52.1912   54.2343   54.2290   55.9832*  55.9837*  56.3476   56.4367   56.5111   56.5796*  56.8173*  58.9394*  58.9339   58.9991*  58.9991*  59.1358*  59.1500*  59.2758   59.4800*  59.5933*  59.6240   59.8986*  60.1318   60.1322   60.3329   60.3748   60.4088   60.4311   60.4843   60.5288   60.5159   60.5783   60.6288   60.7147   60.7698   60.8495   60.9147   60.9724   62.4753   60.7459   1.7744   121.2219   61.2366   61.1739   61.2725   61.0306   61.5410   61.6250   62.8327   62.1308   120.2134   
Found complex roots...
      6    13     120   3.10e-01   54.2270   54.2411   55.7866*  55.9828*  55.9834*  56.3469   56.4354   56.5069   56.5797*  56.8169*  60.1004   58.9393*  58.9330   58.9991*  58.9991*  59.1353*  59.1499*  59.2854   59.4799*  59.5932*  59.6007   59.8985*  60.1328   60.1319   60.3323   60.3751   60.4340   60.4498   60.4498   60.5142   60.4712   60.5704   60.5879   60.7010   60.7502   60.8200   60.9121   60.9413   62.1605   60.5910   1.6631   121.4117   121.9822   61.1645   61.2629   60.8045   61.3030   61.5436   61.6247   61.6001   
Vector=28 Small norm=0.0000!
Root= 28 Small norm=0.0000!
Found complex roots...
      7    17     86    5.31

more iterations… The EOM-CCSD L iterations somehow end up somewhere completely different.

      58   0      100   1.84e-01   128.7349   128.2534   128.6257   128.4674   127.9039   127.7721   128.2082   127.9562   127.3843   127.2534   128.1839   127.5020   130.5080   131.0771   131.7179   127.6382   127.1906   129.0387   129.3327   129.2275   129.5145   128.9638   128.5725   128.5195   129.2908   128.9394   129.0568   129.6325   130.0294   129.8800   130.2933   130.7344   130.3623   126.7744   128.3736   131.1349   131.2868   130.8824   129.9210   130.1060   130.8004   126.9861   128.0608   127.5167   127.4302   125.8566   131.8820   126.0120   126.2588   131.9509   
      59   0      120   1.83e-01   128.7601   129.0710   128.5667   128.3270   127.8168   128.0599   127.7788   128.2447   127.3795   127.4893   130.9578   131.2155   131.1176   127.5766   127.1588   129.3955   129.5582   128.6618   129.0333   128.8838   128.2798   129.1617   129.2657   131.4314   129.6717   129.4188   130.3442   130.0978   129.9880   130.7133   130.4171   128.1838   128.0683   128.4272   128.6013   130.7046   129.8705   130.1535   130.8448   127.0750   126.7351   127.8764   127.6949   127.3610   131.9659   125.9109   126.3509   132.3532   127.0237   128.9869   

     Max Davidson iteration exhausted

biorthogonolize_left_to_right(): degenerate block detected, ndeg=2

biorthogonolize_left_to_right(): degenerate block detected, ndeg=2

biorthogonolize_left_to_right(): degenerate block detected, ndeg=2

biorthogonolize_left_to_right(): degenerate block detected, ndeg=2

biorthogonolize_left_to_right(): degenerate block detected, ndeg=2

biorthogonolize_left_to_right(): small overlap: S=0.0000  for state0
biorthogonolize_left_to_right(): small overlap: S=-0.0007  for state1
biorthogonolize_left_to_right(): small overlap: S=-0.0004  for state4
biorthogonolize_left_to_right(): states mismatch detected: S=-1.2704  for states  6 and 8
biorthogonolize_left_to_right(): states mismatch detected: S=0.9829  for states  6 and 10
biorthogonolize_left_to_right(): states mismatch detected: S=0.6226  for states  6 and 15
biorthogonolize_left_to_right(): states mismatch detected: S=-0.5530  for states  6 and 30
biorthogonolize_left_to_right(): states mismatch detected: S=0.8093  for states  6 and 32
biorthogonolize_left_to_right(): states mismatch detected: S=-0.6532  for states  6 and 33
biorthogonolize_left_to_right(): states mismatch detected: S=-1.0558  for states  6 and 36
biorthogonolize_left_to_right(): states mismatch detected: S=-0.7580  for states  6 and 37
biorthogonolize_left_to_right(): states mismatch detected: S=0.9324  for states  6 and 39
biorthogonolize_left_to_right(): states mismatch detected: S=-0.6565  for states  6 and 41
biorthogonolize_left_to_right(): states mismatch detected: S=1.0519  for states  6 and 42
biorthogonolize_left_to_right(): states mismatch detected: S=-0.6082  for states  6 and 46
biorthogonolize_left_to_right(): states mismatch detected: S=-0.5676  for states  6 and 47
biorthogonolize_left_to_right(): states mismatch detected: S=-0.6924  for states  7 and 2
biorthogonolize_left_to_right(): states mismatch detected: S=0.8218  for states  7 and 3
biorthogonolize_left_to_right(): states mismatch detected: S=-1.0869  for states  7 and 4
biorthogonolize_left_to_right(): states mismatch detected: S=-2.4075  for states  7 and 8
biorthogonolize_left_to_right(): states mismatch detected: S=1.7354  for states  7 and 9
biorthogonolize_left_to_right(): states mismatch detected: S=-1.4038  for states  7 and 10
biorthogonolize_left_to_right(): states mismatch detected: S=-6.5964  for states  7 and 13
biorthogonolize_left_to_right(): states mismatch detected: S=1.9918  for states  7 and 15
biorthogonolize_left_to_right(): states mismatch detected: S=1.0073  for states  7 and 21
biorthogonolize_left_to_right(): states mismatch detected: S=-0.9914  for states  7 and 30
biorthogonolize_left_to_right(): states mismatch detected: S=1.0704  for states  7 and 31
biorthogonolize_left_to_right(): states mismatch detected: S=0.5647  for states  7 and 32
biorthogonolize_left_to_right(): states mismatch detected: S=2.3633  for states  7 and 33
biorthogonolize_left_to_right(): states mismatch detected: S=-0.7179  for states  7 and 34
biorthogonolize_left_to_right(): states mismatch detected: S=-2.4444  for states  7 and 35
biorthogonolize_left_to_right(): states mismatch detected: S=1.9759  for states  7 and 36
biorthogonolize_left_to_right(): states mismatch detected: S=0.5952  for states  7 and 39
biorthogonolize_left_to_right(): states mismatch detected: S=1.3569  for states  7 and 41
biorthogonolize_left_to_right(): states mismatch detected: S=2.8092  for states  7 and 42
biorthogonolize_left_to_right(): states mismatch detected: S=2.3146  for states  7 and 44
biorthogonolize_left_to_right(): states mismatch detected: S=2.9189  for states  7 and 45
biorthogonolize_left_to_right(): states mismatch detected: S=3.1071  for states  7 and 46
biorthogonolize_left_to_right(): states mismatch detected: S=1.4290  for states  7 and 47
biorthogonolize_left_to_right(): states mismatch detected: S=-3.0445  for states  7 and 48
biorthogonolize_left_to_right(): states mismatch detected: S=1.1701  for states  7 and 49
biorthogonolize_left_to_right(): states mismatch detected: S=3.1021  for states  7 and 50
biorthogonolize_left_to_right(): small overlap: S=-0.0001  for state10
biorthogonolize_left_to_right(): states mismatch detected: S=-0.5812  for states  13 and 6
biorthogonolize_left_to_right(): states mismatch detected: S=-0.5101  for states  13 and 32
biorthogonolize_left_to_right(): states mismatch detected: S=1.6911  for states  13 and 33
biorthogonolize_left_to_right(): states mismatch detected: S=-0.6862  for states  13 and 42
biorthogonolize_left_to_right(): states mismatch detected: S=10393067851225.4297  for states  14 and 1
biorthogonolize_left_to_right(): states mismatch detected: S=-748658895819924.7500  for states  14 and 2
biorthogonolize_left_to_right(): states mismatch detected: S=-213682965239373.2500  for states  14 and 3

giving rise to nonsense transition properties…

 Start computing the transition properties

 ------------------------------------------------------------------------------
 State A: ccsd: 0/A
 State B: cvs_eomee_ccsd/rhfref/singlets: 1/A
 Energy GAP = 0.0001 a.u. = 0.0032 eV
 Transition dipole moment (a.u.):
   A->B: 0.000150 (X -0.000046, Y -0.000142, Z -0.000001)
   B->A: 38.239722 (X 37.109395, Y 9.153367, Z -1.176852)
 Oscillator strength (a.u.): -0.000000
 Transition angular momentum against gauge origin (a.u.):
   A->B:  (X 0.000000i, Y 0.000000i, Z 0.000000i)
   B->A:  (X -0.654298i, Y 1.733743i, Z 0.049870i)
 Norm of one-particle transition density matrix:
   A->B: 0.001462;   B->A: 849.979183
   ||gamma^AB||*||gamma^BA||: 1.242726

 ------------------------------------------------------------------------------
 State A: ccsd: 0/A
 State B: cvs_eomee_ccsd/rhfref/singlets: 2/A
 Energy GAP = 1.918600 a.u. = 52.207804 eV
 Transition dipole moment (a.u.):
   A->B: 0.000031 (X 0.000001, Y 0.000000, Z 0.000031)
   B->A: 2.416070 (X -0.463043, Y -2.366455, Z -0.151248)
 Oscillator strength (a.u.): -0.000007
 Transition angular momentum against gauge origin (a.u.):
   A->B:  (X 0.000000i, Y 0.000000i, Z 0.000000i)
   B->A:  (X 0.198452i, Y -0.077534i, Z -0.001932i)
 Norm of one-particle transition density matrix:
   A->B: 0.876048;   B->A: 36.311611
   ||gamma^AB||*||gamma^BA||: 31.810716

 ------------------------------------------------------------------------------
 State A: ccsd: 0/A
 State B: cvs_eomee_ccsd/rhfref/singlets: 3/A
 Energy GAP = 1.993147 a.u. = 54.236309 eV
 Transition dipole moment (a.u.):
   A->B: 0.321175 (X 0.316318, Y 0.055649, Z -0.000023)
   B->A: 1.099860 (X -0.348444, Y -0.229573, Z 1.017632)
 Oscillator strength (a.u.): -0.163462
 Transition angular momentum against gauge origin (a.u.):
   A->B:  (X -0.000073i, Y 0.000013i, Z 0.000000i)
   B->A:  (X -0.144327i, Y 0.015753i, Z -0.000685i)
 Norm of one-particle transition density matrix:
   A->B: 0.732842;   B->A: 27.289973
   ||gamma^AB||*||gamma^BA||: 19.999248