Hi all
I want to know about the HOMO-LUMO in the SF-TDDFT method.
At E.S-1 (which I am considering S0-state) optimization:
There are two singly occupied molecular orbitals (considering alpha spin). The lower orbital (singly occupied molecular orbital i.e., 70 alpha orbital) - I am considering HOMO, and the upper orbital (singly occupied molecular orbital i.e., 71 alpha orbital) - I am considering LUMO. Am I right here?
This is from my S0-state-optimized file (E.S-1 optimization).
SF-DFT Excitation Energies
(The first “excited” state might be the ground state)
Excited state 1: excitation energy (eV) = -2.1399
Total energy for state 1: -899.13106438 au
<S**2> : 0.0520
S( 2) → S( 1) amplitude = 0.9887 alpha
Excited state 2: excitation energy (eV) = 0.4697
Total energy for state 2: -899.03516342 au
<S**2> : 2.0108
S( 1) → S( 1) amplitude = -0.6612 alpha
S( 2) → S( 2) amplitude = 0.7322 alpha
Excited state 3: excitation energy (eV) = 1.5292
Total energy for state 3: -898.99622825 au
<S**2> : 0.1426
S( 1) → S( 1) amplitude = 0.6886 alpha
S( 2) → S( 2) amplitude = 0.6411 alpha
Excited state 4: excitation energy (eV) = 2.0673
Total energy for state 4: -898.97645400 au
<S**2> : 1.0676
D( 68) → S( 1) amplitude = 0.5027
S( 2) → V( 1) amplitude = 0.8377 alpha
Similarly, I am considering the situation of HOMO-LUMO at the S1 state optimization (at E.S-3).
This is from my S1-state-optimized file (E.S-3 optimization).
SF-DFT Excitation Energies
(The first “excited” state might be the ground state)
Excited state 1: excitation energy (eV) = -1.0045
Total energy for state 1: -899.07962046 au
<S**2> : 0.0845
S( 2) → S( 1) amplitude = 0.9750 alpha
S( 2) → V( 2) amplitude = -0.1749 alpha
Excited state 2: excitation energy (eV) = 0.6387
Total energy for state 2: -899.01923483 au
<S**2> : 1.4809
D( 68) → S( 1) amplitude = -0.1512
S( 1) → S( 1) amplitude = 0.9533 alpha
S( 2) → S( 2) amplitude = -0.1880 alpha
Excited state 3: excitation energy (eV) = 0.6604
Total energy for state 3: -899.01843757 au
<S**2> : 0.6532
S( 1) → S( 1) amplitude = 0.1945 alpha
S( 2) → S( 2) amplitude = 0.9046 alpha
S( 2) → V( 1) amplitude = -0.3398 alpha
Excited state 4: excitation energy (eV) = 2.3028
Total energy for state 4: -898.95808083 au
<S**2> : 1.0486
D( 64) → S( 1) amplitude = -0.3618
D( 65) → S( 1) amplitude = -0.5534
D( 66) → S( 1) amplitude = -0.7330