Hi everyone,
I recently optimized a Minimum Energy Crossing Point (MECP) using the penalty-constrained search algorithm within Spin-Flip TDDFT (SF-TDDFT) in Q-Chem. The optimization successfully converged. However, I’m not sure whether the result represents a true conical intersection (MECP) or an artificial crossing.
My Questions:
- How can I verify whether the optimized structure is a true MECP and not an artificial or incorrect topology?
- Is there a way to compute or extract the CI branching plane vectors at the optimized MECP geometry using SF-TDDFT?
Input file:
$molecule
0 3
C 1.8197791310 2.8255337158 7.8326295405
H 1.3082850562 3.7809679608 8.0220619840
H 2.8964033392 2.9896932802 8.0227395371
C 1.6246780268 2.4517998650 6.3760003309
H 0.5421836536 2.3910199357 6.1680562282
C 2.2574584145 1.1636444922 5.9038684250
C 2.0799985494 0.8907811670 4.5368381892
H 1.5523909735 1.6357268541 3.9323850471
C 2.5341063392 -0.2718892425 3.9347125546
H 2.3771203077 -0.4423729755 2.8668438042
C 3.1633727738 -1.2272192076 4.7323128559
H 3.4955923538 -2.1792076388 4.3101507256
C 3.3457771097 -0.9734940794 6.0820610310
H 3.8018802929 -1.7501613104 6.6976003887
C 2.9546701944 0.2348481381 6.7073388890
C 3.2217298023 0.2964730245 8.1809272101
C 2.1611236279 0.6311165487 9.0507041847
C 1.9341653422 -0.1223758624 10.2812442587
H 2.1599800090 -1.1909456738 10.2303555654
C 0.8397684316 0.2215175570 11.1336703792
H 0.6593976690 -0.4056758674 12.0115494118
C 0.0638370528 1.3185942117 10.8902469329
H -0.7421181643 1.6186398673 11.5610123050
C 0.3664030642 2.1091485844 9.7420694044
H -0.1864760908 3.0449737119 9.6048556697
C 1.3526728674 1.8151753690 8.8368934330
C 6.0224464662 -2.7367194708 8.8007450354
H 6.6017920805 -3.6403705134 8.5611815134
H 4.9548648224 -3.0148805971 8.7900004574
C 6.4180426466 -2.2277081369 10.1861268755
H 7.3980101978 -1.7255838630 10.0948707431
C 5.4473986713 -1.2832675684 10.8676799831
C 5.3953956234 -1.3676949809 12.2265695041
H 6.0331250841 -2.0868578728 12.7451118259
C 4.5066975470 -0.5424647460 12.9934608548
H 4.5722934498 -0.5680038585 14.0863282662
C 3.6030703543 0.2729362496 12.4092752004
H 2.9445505530 0.9084469722 13.0051355349
C 3.5416006149 0.3819934669 10.9473334960
H 3.5187439571 1.4415953111 10.6309245718
C 4.5481534416 -0.3909751832 10.1506443612
C 4.4194477477 -0.2695558678 8.7640758794
C 5.5946254194 -0.4640131874 7.8573653192
C 5.9874700151 0.6080831779 7.0437393983
H 5.4364035325 1.5495923895 7.1002039292
C 7.0586974227 0.4872875208 6.1644573995
H 7.3486012064 1.3377466559 5.5423530173
C 7.7464824500 -0.7212576170 6.0736068955
H 8.5780101677 -0.8340416891 5.3733042417
C 7.3773152044 -1.7817313702 6.8970651155
H 7.9289849873 -2.7253549747 6.8523078940
C 6.3180583270 -1.6620828914 7.8004381889
H 1.9994524229 3.2774759736 5.7480521440
H 6.5765479200 -3.0788690635 10.8654099490
$end
$rem
BASIS = cc-pvdz
METHOD = LRC-wPBEh
MECP_OPT = true
mecp_methods = penalty_function
JOB_TYPE = optimization
MAX_CIS_CYCLES = 400
SCF_CONVERGENCE = 8
MAX_SCF_CYCLES = 400
GEOM_OPT_MAX_CYCLES = 300
THRESH = 14
UNRESTRICTED = true
SPIN_FLIP = true
CIS_N_ROOTS = 5
mecp_state1 = [0,1]
mecp_state2 = [0,2]
SYMMETRY_IGNORE = true
SYMMETRY = false
SOLVENT_METHOD = PCM
$end
$solvent
DIELECTRIC 7.5
OPTICALDIELECTRIC 1.40
$end
Here, some part of output:
---------------------------------------------------
SF-DFT Excitation Energies
(The first "excited" state might be the ground state)
---------------------------------------------------
Excited state 1: excitation energy (eV) = 0.5667
Total energy for state 1: -1156.42475579 au
<S**2> : 0.2854
S( 1) --> S( 1) amplitude = -0.4912 alpha
S( 2) --> S( 2) amplitude = 0.8304 alpha
Excited state 2: excitation energy (eV) = 0.6331
Total energy for state 2: -1156.42231420 au
<S**2> : 1.3597
S( 1) --> S( 1) amplitude = 0.5492 alpha
S( 2) --> S( 1) amplitude = 0.7371 alpha
S( 2) --> S( 2) amplitude = 0.2983 alpha
Excited state 3: excitation energy (eV) = 0.6986
Total energy for state 3: -1156.41990756 au
<S**2> : 0.8402
S( 1) --> S( 1) amplitude = -0.6390 alpha
S( 2) --> S( 1) amplitude = 0.6478 alpha
S( 2) --> S( 2) amplitude = -0.3572 alpha
Excited state 4: excitation energy (eV) = 1.3104
Total energy for state 4: -1156.39742343 au
<S**2> : 0.2680
S( 1) --> S( 2) amplitude = 0.9528 alpha
S( 2) --> S( 2) amplitude = 0.1825 alpha
Excited state 5: excitation energy (eV) = 2.3889
Total energy for state 5: -1156.35779144 au
<S**2> : 1.0991
D( 99) --> S( 1) amplitude = -0.1686
D( 99) --> S( 2) amplitude = 0.2368
D( 101) --> S( 1) amplitude = 0.3510
D( 101) --> S( 2) amplitude = -0.1993
S( 1) --> V( 1) amplitude = 0.2802 alpha
S( 2) --> V( 1) amplitude = 0.6895 alpha
S( 2) --> V( 3) amplitude = -0.1936 alpha
A threshold of <S**2> = 1.20 is used to identify singlet states
Excited state 1, <S^2> = 0.2854: is it a singlet? YES.
Excited state 2, <S^2> = 1.3597: is it a singlet? No.
Excited state 3, <S^2> = 0.8402: is it a singlet? YES.
CI_Sigma (Lagrange multiplier) = 3.500
CI_Alpha (stability parameter) = 0.020 a.u.
Lower state energy (state 1) = -1156.4247557881 a.u.
Upper state energy (state 2) = -1156.4199075612 a.u.
Energy gap = 0.004848 a.u. (0.132 eV)
Final energy is -1156.422331674677
******************************
** OPTIMIZATION CONVERGED **
******************************
----------------------------------------------------------------
Standard Nuclear Orientation (Angstroms)
I Atom X Y Z
----------------------------------------------------------------
1 C 1.8198907272 2.8254866621 7.8326933111
2 H 1.3085415319 3.7810049855 8.0220710095
3 H 2.8965572864 2.9894396958 8.0227736407
4 C 1.6247167265 2.4517310271 6.3760735816
5 H 0.5422183472 2.3911178539 6.1681126429
6 C 2.2573771060 1.1635127440 5.9039154968
7 C 2.0799993292 0.8907616070 4.5368530425
8 H 1.5524029762 1.6357346210 3.9324219442
9 C 2.5342136927 -0.2718277212 3.9346459204
10 H 2.3773616600 -0.4421873708 2.8667373620
11 C 3.1634877298 -1.2271951500 4.7321976622
12 H 3.4958123786 -2.1791143884 4.3099597043
13 C 3.3457743093 -0.9735835869 6.0819837702
14 H 3.8017693994 -1.7503250763 6.6975122349
15 C 2.9545648214 0.2346800021 6.7073538127
16 C 3.2216644190 0.2963553737 8.1809309749
17 C 2.1610357939 0.6311168461 9.0507386037
18 C 1.9340631387 -0.1223933563 10.2812492763
19 H 2.1597912167 -1.1909876001 10.2303616677
20 C 0.8398326418 0.2216271819 11.1337648835
21 H 0.6594852279 -0.4054699981 12.0117143337
22 C 0.0638994599 1.3187130759 10.8903227126
23 H -0.7420206473 1.6187726719 11.5611222685
24 C 0.3664113421 2.1091710298 9.7421221283
25 H -0.1864693924 3.0449895471 9.6048663594
26 C 1.3527285812 1.8151981557 8.8369915038
27 C 6.0225531018 -2.7366973461 8.8007779246
28 H 6.6020029403 -3.6402851375 8.5611864827
29 H 4.9550175254 -3.0150120919 8.7900381130
30 C 6.4180879027 -2.2276781240 10.1861699645
31 H 7.3980365477 -1.7255178622 10.0949627235
32 C 5.4473999482 -1.2832907481 10.8677220427
33 C 5.3953808742 -1.3677006204 12.2266557781
34 H 6.0330520444 -2.0868813105 12.7452474334
35 C 4.5066223137 -0.5424580317 12.9934727323
36 H 4.5721402107 -0.5680203006 14.0863439482
37 C 3.6030311451 0.2729727478 12.4092241039
38 H 2.9443985283 0.9084542086 13.0049848697
39 C 3.5415728020 0.3819776302 10.9472279168
40 H 3.5187725175 1.4415777078 10.6308543123
41 C 4.5481335929 -0.3910036680 10.1506430112
42 C 4.4194008401 -0.2696709587 8.7640861567
43 C 5.5945374352 -0.4640455458 7.8573473820
44 C 5.9872855024 0.6080458680 7.0436627324
45 H 5.4361022159 1.5494896594 7.1000673077
46 C 7.0584979961 0.4873019805 6.1643569454
47 H 7.3482930538 1.3377446543 5.5421787102
48 C 7.7463926459 -0.7211817433 6.0735495245
49 H 8.5779308631 -0.8339128242 5.3732503275
50 C 7.3773252106 -1.7816565470 6.8970593273
51 H 7.9290490282 -2.7252491038 6.8522999007
52 C 6.3180845631 -1.6620604474 7.8004481490
53 H 1.9996985300 3.2773313867 5.7481499617
54 H 6.5765527778 -3.0788655735 10.8654382505