Imaginary Frequencies in S1 Calculation for Anion and Cation Cluster

I have been having some “stubborn” imaginary frequencies when I calculate the S1 state of my molecule, 4 benzoylbenzoic acid (both in anion and cation), with a single water molecule. I am also having this issue when I attempt to run the S1 without water molecules.

Below is my input file for the geometric optimization of the anion of my molecule with one water molecule.

$rem
JOBTYPE opt
EXCHANGE B3LYP
BASIS aug-cc-pVDZ
CIS_N_ROOTS 5
CIS_STATE_DERIV 1
GEOM_OPT_TOL_GRADIENT 2
GEOM_OPT_TOL_ENERGY 1
GEOM_OPT_COORDS 0
DFT_D D3_BJ
MAX_SCF_CYCLES 1000
GEOM_OPT_MAX_CYCLES 1000
$end

$molecule
-1 1
C -0.3491237556 -0.7860532340 0.0221422394
C -1.7214073250 -1.4378118231 0.0508756605
C -0.0233913926 0.2942623793 -0.8100347805
C 0.6778157801 -1.3577195366 0.7890441415
C 2.2835640217 0.2313257368 -0.0782579110
C 1.2771411251 0.8016609061 -0.8617021538
C 1.9769239518 -0.8559119329 0.7494722229
C 3.6634768884 0.7612492715 -0.1361074728
H -0.7953850132 0.7390938565 -1.4343174220
H 0.4420451259 -2.2270898964 1.3996185041
H 1.5056444773 1.6405449909 -1.5171966475
H 2.7549993904 -1.3193787298 1.3539454856
C -2.9153908090 -0.6459695242 0.1496428247
C -4.1900550019 -1.3060458474 0.0626356143
H -4.1896343328 -2.3828129429 -0.0948684258
C -5.3768930232 -0.6017456442 0.1723777934
H -6.3245882509 -1.1402787708 0.0911391210
C -5.3874271870 0.7934541211 0.3878320262
H -6.3249098589 1.3419971320 0.4744002334
C -4.1445972092 1.4564839409 0.5019068524
H -4.1224187460 2.5318364375 0.6925611422
C -2.9472999143 0.7680350152 0.3879938531
H -2.0163788611 1.3175661471 0.5105367091
O -1.7258564536 -2.7032493434 -0.0075427416
O 4.6130666339 0.3997375480 0.6208503022
O 4.0708287048 1.6430141274 -0.9477323217
H 7.1301225485 1.7346853361 0.0047131882
O 6.9865961076 2.3431995342 -0.7294886152
H 6.0425886580 2.2224766457 -0.9167047005
$end

This is followed by a frequency calculation:
$rem
JOBTYPE freq
EXCHANGE B3LYP
BASIS aug-cc-pVDZ
DFT_D D3_BJ
MAX_SCF_CYCLES 1000
GEOM_OPT_MAX_CYCLES 1000
MEM_TOTAL 40192
CIS_N_ROOTS 1
CIS_STATE_DERIV 1
$end

$molecule
-1 1
C -0.3491237556 -0.7860532340 0.0221422394
C -1.7214073250 -1.4378118231 0.0508756605
C -0.0233913926 0.2942623793 -0.8100347805
C 0.6778157801 -1.3577195366 0.7890441415
C 2.2835640217 0.2313257368 -0.0782579110
C 1.2771411251 0.8016609061 -0.8617021538
C 1.9769239518 -0.8559119329 0.7494722229
C 3.6634768884 0.7612492715 -0.1361074728
H -0.7953850132 0.7390938565 -1.4343174220
H 0.4420451259 -2.2270898964 1.3996185041
H 1.5056444773 1.6405449909 -1.5171966475
H 2.7549993904 -1.3193787298 1.3539454856
C -2.9153908090 -0.6459695242 0.1496428247
C -4.1900550019 -1.3060458474 0.0626356143
H -4.1896343328 -2.3828129429 -0.0948684258
C -5.3768930232 -0.6017456442 0.1723777934
H -6.3245882509 -1.1402787708 0.0911391210
C -5.3874271870 0.7934541211 0.3878320262
H -6.3249098589 1.3419971320 0.4744002334
C -4.1445972092 1.4564839409 0.5019068524
H -4.1224187460 2.5318364375 0.6925611422
C -2.9472999143 0.7680350152 0.3879938531
H -2.0163788611 1.3175661471 0.5105367091
O -1.7258564536 -2.7032493434 -0.0075427416
O 4.6130666339 0.3997375480 0.6208503022
O 4.0708287048 1.6430141274 -0.9477323217
H 7.1301225485 1.7346853361 0.0047131882
O 6.9865961076 2.3431995342 -0.7294886152
H 6.0425886580 2.2224766457 -0.9167047005
$end

Here is the output for the frequency:
STANDARD THERMODYNAMIC QUANTITIES AT 298.15 K AND 1.00 ATM

This Molecule has 2 Imaginary Frequencies
Zero point vibrational energy: 135.615 kcal/mol

Atom 1 Element C Has Mass 12.00000
Atom 2 Element C Has Mass 12.00000
Atom 3 Element C Has Mass 12.00000
Atom 4 Element C Has Mass 12.00000
Atom 5 Element C Has Mass 12.00000
Atom 6 Element C Has Mass 12.00000
Atom 7 Element C Has Mass 12.00000
Atom 8 Element C Has Mass 12.00000
Atom 9 Element H Has Mass 1.00783
Atom 10 Element H Has Mass 1.00783
Atom 11 Element H Has Mass 1.00783
Atom 12 Element H Has Mass 1.00783
Atom 13 Element C Has Mass 12.00000
Atom 14 Element C Has Mass 12.00000
Atom 15 Element H Has Mass 1.00783
Atom 16 Element C Has Mass 12.00000
Atom 17 Element H Has Mass 1.00783
Atom 18 Element C Has Mass 12.00000
Atom 19 Element H Has Mass 1.00783
Atom 20 Element C Has Mass 12.00000
Atom 21 Element H Has Mass 1.00783
Atom 22 Element C Has Mass 12.00000
Atom 23 Element H Has Mass 1.00783
Atom 24 Element O Has Mass 15.99491
Atom 25 Element O Has Mass 15.99491
Atom 26 Element O Has Mass 15.99491
Atom 27 Element H Has Mass 1.00783
Atom 28 Element O Has Mass 15.99491
Atom 29 Element H Has Mass 1.00783
Molecular Mass: 243.065770 amu
Principal axes and moments of inertia in amu*Bohr^2:
1 2 3
Eigenvalues – 1459.51480 12375.80585 13411.39786
X 0.99999 -0.00410 -0.00002
Y 0.00410 0.99996 -0.00792
Z 0.00005 0.00792 0.99997
Rotational Symmetry Number is 1
The Molecule is an Asymmetric Top
Translational Enthalpy: 0.889 kcal/mol
Rotational Enthalpy: 0.889 kcal/mol
Vibrational Enthalpy: 143.167 kcal/mol
gas constant (RT): 0.592 kcal/mol
Translational Entropy: 42.365 cal/mol.K
Rotational Entropy: 33.848 cal/mol.K
Vibrational Entropy: 47.334 cal/mol.K

Total Enthalpy: 145.537 kcal/mol
Total Entropy: 123.547 cal/mol.K

I have also performed a frequency calculation, followed by an optimization, followed by a frequency calculation, as per a previous thread’s suggestion, and I still have 2 imaginary frequencies remaining.

This is the same case for the cation of the molecule with no water molecules.

Here is its input for the geometric optimization:
$rem
JOBTYPE opt
EXCHANGE B3LYP
BASIS aug-cc-pVDZ
CIS_N_ROOTS 1
CIS_STATE_DERIV 1
CIS_SINGLETS true
CIS_TRIPLETS false
GEOM_OPT_TOL_GRADIENT 1
GEOM_OPT_TOL_ENERGY 1
GEOM_OPT_COORDS 0
DFT_D D3_BJ
MAX_SCF_CYCLES 1000
GEOM_OPT_MAX_CYCLES 1000
$end

$molecule
1 1
O 4.5977638003 -1.7522985003 0.4409784025
O 5.2616544645 0.1770700267 -0.2379952613
C 0.1794243696 0.6476593676 0.0355001860
C -1.2041065465 1.0823181729 0.0506300760
C 0.5542137812 -0.6605267891 0.4270053310
C 1.1967816741 1.5678315258 -0.3175741969
C 2.8777197009 -0.1235985445 0.0598989639
C 1.8853672671 -1.0479444708 0.4362570543
C 2.5293168926 1.1887007385 -0.3121174445
C 4.2654586556 -0.5297204120 0.0739079985
H -0.2014358960 -1.3651554454 0.7617201876
H 0.9281733174 2.5807202549 -0.6026872715
H 2.1486305849 -2.0550249350 0.7511369106
H 3.2894812061 1.9133625444 -0.5971914437
H 5.5625350722 -1.9090188721 0.4131359516
C -2.3719747819 0.2436179622 0.0213726321
C -3.5876987799 0.6974848294 0.5971067524
H -3.6162396747 1.6340356702 1.1549252431
C -4.7379448038 -0.0797754310 0.5298821958
H -5.6558508604 0.2741458947 0.9972535529
C -4.7152096201 -1.3194077568 -0.1209048109
H -5.6191255171 -1.9244066890 -0.1740045448
C -3.5270703473 -1.7767301122 -0.7065464613
H -3.5129928471 -2.7286252293 -1.2355255820
C -2.3693067335 -1.0124907262 -0.6384304827
H -1.4700940503 -1.3555592799 -1.1443084436
O -1.3445795935 2.4205342512 0.1203492669
H -2.2647309170 2.6761816541 -0.0419024235
$end

And the frequency calculation:
$rem
JOBTYPE freq
EXCHANGE B3LYP
BASIS aug-cc-pVDZ
DFT_D D3_BJ
MAX_SCF_CYCLES 1000
GEOM_OPT_MAX_CYCLES 1000
MEM_TOTAL 20192
CIS_N_ROOTS 1
CIS_SINGLETS true
CIS_TRIPLETS false
CIS_STATE_DERIV 1
$end

$molecule
1 1
O 4.3855450224 -1.9704538430 1.0615646862
O 5.2154627365 -0.0555825754 0.5429722892
C 0.1662553068 0.6349592645 0.1427860863
C -1.1887120772 1.1283204800 -0.0168299508
C 0.4309055651 -0.7000296784 0.5317240766
C 1.2577767537 1.5203120230 -0.0313810970
C 2.8023696147 -0.2547550180 0.5090383806
C 1.7317099882 -1.1457049219 0.7102948860
C 2.5610394769 1.0827202206 0.1426147259
C 4.1574674374 -0.7239925349 0.6954720792
H -0.3900538166 -1.3819292048 0.7334796106
H 1.0707040475 2.5532063326 -0.3103905806
H 1.9088009283 -2.1737075345 1.0178451240
H 3.3812095507 1.7819791771 -0.0074772805
H 5.3378393878 -2.1708516653 1.1567752772
C -2.3653229399 0.3429806732 -0.2708170113
C -3.6407749748 0.8170197780 0.1348392226
H -3.7250310135 1.7231196048 0.7358667052
C -4.7918063780 0.0950696617 -0.1579224148
H -5.7597555395 0.4621526937 0.1806039622
C -4.7079450075 -1.1069262638 -0.8712940828
H -5.6119483598 -1.6685435977 -1.1024979889
C -3.4581889651 -1.5833986025 -1.2897856614
H -3.3936343819 -2.5055465121 -1.8657329428
C -2.3003206125 -0.8754819220 -0.9951007394
H -1.3445396250 -1.2302140115 -1.3728190178
O -1.2912688784 2.4658170037 0.1102192697
H -2.1685206663 2.7677448345 -0.1683518747
$end

Which has the same result of 2 imaginary frequencies:
STANDARD THERMODYNAMIC QUANTITIES AT 298.15 K AND 1.00 ATM

This Molecule has 2 Imaginary Frequencies
Zero point vibrational energy: 134.928 kcal/mol

Atom 1 Element O Has Mass 15.99491
Atom 2 Element O Has Mass 15.99491
Atom 3 Element C Has Mass 12.00000
Atom 4 Element C Has Mass 12.00000
Atom 5 Element C Has Mass 12.00000
Atom 6 Element C Has Mass 12.00000
Atom 7 Element C Has Mass 12.00000
Atom 8 Element C Has Mass 12.00000
Atom 9 Element C Has Mass 12.00000
Atom 10 Element C Has Mass 12.00000
Atom 11 Element H Has Mass 1.00783
Atom 12 Element H Has Mass 1.00783
Atom 13 Element H Has Mass 1.00783
Atom 14 Element H Has Mass 1.00783
Atom 15 Element H Has Mass 1.00783
Atom 16 Element C Has Mass 12.00000
Atom 17 Element C Has Mass 12.00000
Atom 18 Element H Has Mass 1.00783
Atom 19 Element C Has Mass 12.00000
Atom 20 Element H Has Mass 1.00783
Atom 21 Element C Has Mass 12.00000
Atom 22 Element H Has Mass 1.00783
Atom 23 Element C Has Mass 12.00000
Atom 24 Element H Has Mass 1.00783
Atom 25 Element C Has Mass 12.00000
Atom 26 Element H Has Mass 1.00783
Atom 27 Element O Has Mass 15.99491
Atom 28 Element H Has Mass 1.00783
Molecular Mass: 227.070860 amu
Principal axes and moments of inertia in amu*Bohr^2:
1 2 3
Eigenvalues – 1387.93310 8715.04896 9826.65545
X 1.00000 0.00196 -0.00062
Y -0.00196 1.00000 0.00208
Z 0.00063 -0.00208 1.00000
Rotational Symmetry Number is 1
The Molecule is an Asymmetric Top
Translational Enthalpy: 0.889 kcal/mol
Rotational Enthalpy: 0.889 kcal/mol
Vibrational Enthalpy: 141.044 kcal/mol
gas constant (RT): 0.592 kcal/mol
Translational Entropy: 42.162 cal/mol.K
Rotational Entropy: 33.141 cal/mol.K
Vibrational Entropy: 37.144 cal/mol.K

Total Enthalpy: 143.414 kcal/mol
Total Entropy: 112.447 cal/mol.K

I have also performed a frequency, optimization, frequency calculation for this set as well, for me to have 2 imaginary frequencies at the result as well. Are there any suggestions for what I can do next to remove these imaginary frequencies?

what’s more important to diagnosing this, rather than all this thermo stuff, is how close is energy is the next excited state? Separately (but maybe related), have you considered doing some 1-d scans along the imaginary modes?

I have performed a 1-D scan along the 2 imaginary modes. This is my input file:
$rem
JOBTYPE freq
EXCHANGE B3LYP
BASIS aug-cc-pVDZ
DFT_D D3_BJ
MAX_SCF_CYCLES 1000
GEOM_OPT_MAX_CYCLES 1000
MEM_TOTAL 40192
CIS_N_ROOTS 1
CIS_STATE_DERIV 1
$end

$molecule
-1 1
C -0.3491237556 -0.7860532340 0.0221422394
C -1.7214073250 -1.4378118231 0.0508756605
C -0.0233913926 0.2942623793 -0.8100347805
C 0.6778157801 -1.3577195366 0.7890441415
C 2.2835640217 0.2313257368 -0.0782579110
C 1.2771411251 0.8016609061 -0.8617021538
C 1.9769239518 -0.8559119329 0.7494722229
C 3.6634768884 0.7612492715 -0.1361074728
H -0.7953850132 0.7390938565 -1.4343174220
H 0.4420451259 -2.2270898964 1.3996185041
H 1.5056444773 1.6405449909 -1.5171966475
H 2.7549993904 -1.3193787298 1.3539454856
C -2.9153908090 -0.6459695242 0.1496428247
C -4.1900550019 -1.3060458474 0.0626356143
H -4.1896343328 -2.3828129429 -0.0948684258
C -5.3768930232 -0.6017456442 0.1723777934
H -6.3245882509 -1.1402787708 0.0911391210
C -5.3874271870 0.7934541211 0.3878320262
H -6.3249098589 1.3419971320 0.4744002334
C -4.1445972092 1.4564839409 0.5019068524
H -4.1224187460 2.5318364375 0.6925611422
C -2.9472999143 0.7680350152 0.3879938531
H -2.0163788611 1.3175661471 0.5105367091
O -1.7258564536 -2.7032493434 -0.0075427416
O 4.6130666339 0.3997375480 0.6208503022
O 4.0708287048 1.6430141274 -0.9477323217
H 7.1301225485 1.7346853361 0.0047131882
O 6.9865961076 2.3431995342 -0.7294886152
H 6.0425886580 2.2224766457 -0.9167047005
$end

$scan
SCANMODE 2
BEGIN -0.5
END 0.5
STEPS 10
$end

Here is the result for the two imaginary frequencies for a single system that I have found thus far:

Mode: 1 2 3
Frequency: -129.77 -45.11 24.38
Force Cnst: 0.0418 0.0085 0.0036
Red. Mass: 4.2099 7.0603 10.2560
IR Active: YES YES YES
IR Intens: 0.174 6.352 3.028
Raman Active: YES YES YES

Imaginary Mode 1:
Principal axes and moments of inertia in amu*Bohr^2:
1 2 3
Eigenvalues – 1459.51480 12375.80585 13411.39786
X 0.99999 -0.00410 -0.00002
Y 0.00410 0.99996 -0.00792
Z 0.00005 0.00792 0.99997
Rotational Symmetry Number is 1
The Molecule is an Asymmetric Top
Translational Enthalpy: 0.889 kcal/mol
Rotational Enthalpy: 0.889 kcal/mol
Vibrational Enthalpy: 143.167 kcal/mol
gas constant (RT): 0.592 kcal/mol
Translational Entropy: 42.366 cal/mol.K
Rotational Entropy: 33.848 cal/mol.K
Vibrational Entropy: 47.334 cal/mol.K

Total Enthalpy: 145.537 kcal/mol
Total Entropy: 123.548 cal/mol.K

Quasi-RRHO corrections using alpha = 4, and omega = 100 cm^-1
QRRHO-Vib. Enthalpy: 142.067 kcal/mol
QRRHO-Vib. Entropy: 43.928 cal/mol.K
QRRHO-Total Enthalpy: 144.437 kcal/mol
QRRHO-Total Entropy: 120.142 cal/mol.K

Imaginary Mode 2:
Principal axes and moments of inertia in amu*Bohr^2:
1 2 3
Eigenvalues – 1459.51480 12375.80585 13411.39786
X 0.99999 -0.00410 -0.00002
Y 0.00410 0.99996 -0.00792
Z 0.00005 0.00792 0.99997
Rotational Symmetry Number is 1
The Molecule is an Asymmetric Top
Translational Enthalpy: 0.889 kcal/mol
Rotational Enthalpy: 0.889 kcal/mol
Vibrational Enthalpy: 143.167 kcal/mol
gas constant (RT): 0.592 kcal/mol
Translational Entropy: 42.366 cal/mol.K
Rotational Entropy: 33.848 cal/mol.K
Vibrational Entropy: 47.335 cal/mol.K

Total Enthalpy: 145.537 kcal/mol
Total Entropy: 123.549 cal/mol.K

Quasi-RRHO corrections using alpha = 4, and omega = 100 cm^-1
QRRHO-Vib. Enthalpy: 142.067 kcal/mol
QRRHO-Vib. Entropy: 43.929 cal/mol.K
QRRHO-Total Enthalpy: 144.437 kcal/mol
QRRHO-Total Entropy: 120.143 cal/mol.K

Please let me know if this information is helpful, or if there are other things I can copy onto here that would be more informative.

I do not recognize any of the stuff inside the $scan input section. Where are you finding documentation for this?

It’s not my intention to do the analysis for you, I was merely providing some suggestions.