Dear users,
I recently tried the MRSF-TDDF method. Here is the output :
Excited state 1: excitation energy (eV) = 0.9342
Total energy for state 1: -1572.21760926 au
<S**2> : 0.0000
Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z
Strength : 0.0000000000
S( 1) --> S( 1) amplitude = 0.9930 alpha
Excited state 2: excitation energy (eV) = 2.6996
Total energy for state 2: -1572.15273141 au
<S**2> : 0.0000
Trans. Mom.: 0.1516 X 0.3062 Y 0.1769 Z
Strength : 0.0064015330
D( 127) --> S( 1) amplitude = 0.1555
D( 127) --> V( 1) amplitude = 0.1636
D( 129) --> S( 1) amplitude = -0.1900
D( 129) --> V( 1) amplitude = -0.2203
S( 2) --> S( 1) amplitude = 0.6091 alpha
S( 2) --> V( 1) amplitude = 0.5388 alpha
S( 2) --> V( 2) amplitude = -0.2458 alpha
Excited state 3: excitation energy (eV) = 2.8081
Total energy for state 3: -1572.14874580 au
<S**2> : 0.0000
Trans. Mom.: 0.0310 X 0.0653 Y -0.1620 Z
Strength : 0.0014450456
D( 124) --> S( 1) amplitude = 0.7042
D( 125) --> S( 2) amplitude = -0.2345
D( 126) --> S( 1) amplitude = -0.4111
D( 127) --> S( 2) amplitude = -0.1967
D( 128) --> S( 1) amplitude = -0.2131
D( 128) --> V( 1) amplitude = -0.1636
I noticed that the calculation gave me a non-zero value for the “strength” and also for the transition dipole moment. I was curious to know how this value is computed and whether it has a physical meaning, given that, a priori, no spin–orbit coupling is being calculated.
Could you also please confirm the nature of my excited states? If I am not mistaken, my first state corresponds to an open-shell singlet state, and the second a mix between the singlet ground state and an open shell singlet.
Thank you in advance !