Also, the full output for the first job:
Running Job 1 of 1 GaSH_excite.inp
qchem GaSH_excite.inp_149778.0 /central/scratch/hutzlerlab/qchem149778/ 0
/central/groups/hutzlerlab/software/qchem/exe/qcprog.exe_s GaSH_excite.inp_149778.0 /central/scratch/hutzlerlab/qchem149778/
Welcome to Q-Chem
A Quantum Leap Into The Future Of Chemistry
Q-Chem 5.3, Q-Chem, Inc., Pleasanton, CA (2020)
License issued to: SRG Nick Hutzler, California Institute of Technology (demo)
Yihan Shao, Zhengting Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit,
J. Kussmann, A. W. Lange, A. Behn, Jia Deng, Xintian Feng, D. Ghosh,
M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, T. Kus, A. Landau,
Jie Liu, E. I. Proynov, R. M. Richard, R. P. Steele, E. J. Sundstrom,
H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Alam, B. Albrecht,
A. Aldossary, E. Alguire, S. A. Baeppler, D. Barton, Z. Benda,
Y. A. Bernard, E. J. Berquist, K. B. Bravaya, H. Burton, K. Carter-Fenk,
D. Casanova, Chun-Min Chang, Yunqing Chen, A. Chien, K. D. Closser,
M. P. Coons, S. Coriani, S. Dasgupta, A. L. Dempwolff, M. Diedenhofen,
Hainam Do, R. G. Edgar, Po-Tung Fang, S. Faraji, S. Fatehi,
Qingguo Feng, J. Fosso-Tande, J. Gayvert, Qinghui Ge, A. Ghysels,
G. Gidofalvi, J. Gomes, J. Gonthier, S. Gulania, A. Gunina, D. Hait,
M. W. D. Hanson-Heine, S. Hammes-Schiffer, P. H. P. Harbach,
A. W. Hauser, M. F. Herbst, J. E. Herr, E. G. Hohenstein, Z. C. Holden,
S. Houck, Kerwin Hui, B. C. Huynh, M. Ivanov, T.-C. Jagau, Hyunjun Ji,
B. Kaduk, K. Khistyaev, Jaehoon Kim, P. Klunzinger, K. Koh,
D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, A. Kunitsa,
Ka Un Lao, A. Laurent, K. V. Lawler, Joonho Lee, D. Lefrancois,
S. Lehtola, D. S. Levine, Yi-Pei Li, You-Sheng Lin, Fenglai Liu,
Kuan-Yu Liu, E. Livshits, M. Loipersberger, A. Luenser, P. Manohar,
E. Mansoor, S. F. Manzer, Shan-Ping Mao, Yuezhi Mao, N. Mardirossian,
A. V. Marenich, T. Markovich, L. A. Martinez-Martinez, S. A. Maurer,
N. J. Mayhall, S. C. McKenzie, J.-M. Mewes, P. Morgante, A. F. Morrison,
J. W. Mullinax, K. Nanda, T. S. Nguyen-Beck, R. Olivares-Amaya,
K. J. Oosterbaan, J. A. Parkhill, S. K. Paul, F. Pavosevic, Zheng Pei,
T. M. Perrine, F. Plasser, P. Pokhilko, S. Prager, A. Prociuk,
E. Ramos, B. Rana, D. R. Rehn, F. Rob, E. Rossomme, M. Scheurer,
M. Schneider, N. Sergueev, S. M. Sharada, S. Sharma, W. Skomorowski,
D. W. Small, T. Stauch, C. J. Stein, T. Stein, Yu-Chuan Su,
S. P. Veccham, Zhen Tao, A. J. W. Thom, A. Tkatchenko, T. Tsuchimochi,
N. M. Tubman, L. Vogt, M. L. Vidal, O. Vydrov, M. A. Watson, J. Wenzel,
M. de Wergifosse, T. A. Wesolowski, A. White, J. Witte, A. Yamada,
Jun Yang, K. Yao, S. Yeganeh, S. R. Yost, Zhi-Qiang You, A. Zech,
Igor Ying Zhang, Xing Zhang, Yan Zhao, Ying Zhu, B. R. Brooks,
G. K. L. Chan, C. J. Cramer, M. S. Gordon, W. J. Hehre, A. Klamt,
M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Aspuru-Guzik, R. Baer,
A. T. Bell, N. A. Besley, Jeng-Da Chai, A. E. DePrince, III,
R. A. DiStasio Jr., A. Dreuw, B. D. Dunietz, T. R. Furlani,
Chao-Ping Hsu, Yousung Jung, Jing Kong, D. S. Lambrecht, WanZhen Liang,
C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik,
T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, M. Head-Gordon
Contributors to earlier versions of Q-Chem not listed above:
R. D. Adamson, B. Austin, J. Baker, G. J. O. Beran, K. Brandhorst,
S. T. Brown, E. F. C. Byrd, A. K. Chakraborty, C.-L. Cheng,
Siu Hung Chien, D. M. Chipman, D. L. Crittenden, H. Dachsel,
R. J. Doerksen, A. D. Dutoi, L. Fusti-Molnar, W. A. Goddard III,
A. Golubeva-Zadorozhnaya, S. R. Gwaltney, G. Hawkins, A. Heyden,
S. Hirata, G. Kedziora, F. J. Keil, C. Kelley, Jihan Kim, R. A. King,
R. Z. Khaliullin, P. P. Korambath, W. Kurlancheek, A. M. Lee, M. S. Lee,
S. V. Levchenko, Ching Yeh Lin, D. Liotard, R. C. Lochan, I. Lotan,
P. E. Maslen, N. Nair, D. P. O'Neill, D. Neuhauser, E. Neuscamman,
C. M. Oana, R. Olson, B. Peters, R. Peverati, P. A. Pieniazek,
Y. M. Rhee, J. Ritchie, M. A. Rohrdanz, E. Rosta, N. J. Russ,
H. F. Schaefer III, N. E. Schultz, N. Shenvi, A. C. Simmonett, A. Sodt,
D. Stuck, K. S. Thanthiriwatte, V. Vanovschi, Tao Wang, A. Warshel,
C. F. Williams, Q. Wu, X. Xu, W. Zhang
Please cite Q-Chem as follows:
Y. Shao et al., Mol. Phys. 113, 184-215 (2015)
DOI: 10.1080/00268976.2014.952696
Q-Chem 5.3.1 for Intel X86 EM64T Linux
Parts of Q-Chem use Armadillo 9.800.1 (Horizon Scraper).
http://arma.sourceforge.net/
Q-Chem begins on Wed Mar 17 22:21:02 2021
Host:
0
Scratch files written to /central/scratch/hutzlerlab/qchem149778//
Aug2920 |scratch|qcdevops|jenkins|workspace|build_RNUM 7577
Processing $rem in /central/groups/hutzlerlab/software/qchem/config/preferences:
Processing $rem in /home/pyyu/.qchemrc:
Core orbitals will be frozen
Checking the input file for inconsistencies... ...done.
--------------------------------------------------------------
User input:
--------------------------------------------------------------
$comment
SO mixing b/w a3Ap and X1Ap
using X1Ap geometry as reference
$end
$molecule
0 1
S
H 1 1.345208
Ga 1 2.292504 2 90.209018
$end
$rem
BASIS = cc-pVTZ
GUI = 2
JOB_TYPE = SP
METHOD = EOM-CCSD
EE_TRIPLETS = [1,0]
CALC_SOC = 1
CC_TRANS_PROP = 1
SCF_CONVERGENCE = 8
MEM_STATIC = 2000
MEM_TOTAL = 16000
$end
--------------------------------------------------------------
----------------------------------------------------------------
Standard Nuclear Orientation (Angstroms)
I Atom X Y Z
----------------------------------------------------------------
1 S 1.4785332351 -0.0807833807 0.0000000000
2 H 1.5313914246 1.2633857214 -0.0000000000
3 Ga -0.8125136512 0.0009402700 0.0000000000
----------------------------------------------------------------
Molecular Point Group Cs NOp = 2
Largest Abelian Subgroup Cs NOp = 2
Nuclear Repulsion Energy = 126.94728369 hartrees
There are 24 alpha and 24 beta electrons
Requested basis set is cc-pVTZ
There are 33 shells and 91 basis functions
Total memory of 16000 MB is distributed as follows:
MEM_STATIC is set to 2000 MB
QALLOC/CCMAN JOB total memory use is 14000 MB
Warning: actual memory use might exceed 16000 MB
Total QAlloc Memory Limit 16000 MB
Mega-Array Size 1956 MB
MEM_STATIC part 2000 MB
Distance Matrix (Angstroms)
S ( 1) H ( 2)
H ( 2) 1.345208
Ga( 3) 2.292504 2.662266
A cutoff of 1.0D-14 yielded 556 shell pairs
There are 4312 function pairs ( 5560 Cartesian)
Smallest overlap matrix eigenvalue = 3.33E-03
Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01
Standard Electronic Orientation quadrupole field applied
Nucleus-field energy = 0.0000000022 hartrees
Guess from superposition of atomic densities
Warning: Energy on first SCF cycle will be non-variational
SAD guess density has 48.000000 electrons
-----------------------------------------------------------------------
General SCF calculation program by
Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
Bang C. Huynh
-----------------------------------------------------------------------
Hartree-Fock
using 8 threads for integral computing
-------------------------------------------------------
OpenMP Integral computing Module
Release: version 1.0, May 2013, Q-Chem Inc. Pittsburgh
-------------------------------------------------------
A restricted SCF calculation will be
performed using DIIS
SCF converges when DIIS error is below 1.0e-08
---------------------------------------
Cycle Energy DIIS error
---------------------------------------
1 -2321.4138739861 3.73e-02
2 -2321.4252616671 3.93e-03
3 -2321.4509565769 1.99e-03
4 -2321.4558262216 3.99e-04
5 -2321.4563534422 1.31e-04
6 -2321.4564106630 4.49e-05
7 -2321.4564165970 1.30e-05
8 -2321.4564174807 3.83e-06
9 -2321.4564175772 1.04e-06
10 -2321.4564175831 3.01e-07
11 -2321.4564175836 6.21e-08
12 -2321.4564175836 1.59e-08
13 -2321.4564175836 5.32e-09 Convergence criterion met
---------------------------------------
SCF time: CPU 71.91s wall 10.00s
SCF energy in the final basis set = -2321.4564175836
Total energy in the final basis set = -2321.4564175836
------------------------------------------------------------------------------
CCMAN2: suite of methods based on coupled cluster
and equation of motion theories.
Components:
* libvmm-1.3-trunk
by Evgeny Epifanovsky, Ilya Kaliman.
* libtensor-2.5-trunk
by Evgeny Epifanovsky, Michael Wormit, Dmitry Zuev, Sam Manzer,
Ilya Kaliman.
* libcc-2.5-trunk
by Evgeny Epifanovsky, Arik Landau, Tomasz Kus, Kirill Khistyaev,
Dmitry Zuev, Prashant Manohar, Xintian Feng, Anna Krylov,
Matthew Goldey, Alec White, Thomas Jagau, Kaushik Nanda,
Anastasia Gunina, Alexander Kunitsa, Joonho Lee.
CCMAN original authors:
Anna I. Krylov, C. David Sherrill, Steven R. Gwaltney,
Edward F. C. Byrd (2000)
Sergey V. Levchenko, Lyudmila V. Slipchenko, Tao Wang,
Ana-Maria C. Cristian (2003)
Piotr A. Pieniazek, C. Melania Oana, Evgeny Epifanovsky (2007)
Prashant Manohar (2009)
------------------------------------------------------------------------------
Allocating and initializing 14000MB of RAM...
Calculation will run on 8 cores.
Alpha MOs, Restricted
-- Occupied --
-378.83 -91.93 -48.18 -42.50 -42.50 -42.50 -8.93 -6.61
1 A' 2 A' 3 A' 4 A' 1 A" 5 A' 6 A' 7 A'
-6.613 -6.612 -6.406 -4.496 -4.495 -4.491 -1.209 -1.209
8 A' 2 A" 9 A' 10 A' 3 A" 11 A' 12 A' 4 A"
-1.205 -1.204 -1.203 -0.933 -0.536 -0.480 -0.367 -0.316
13 A' 14 A' 5 A" 15 A' 16 A' 17 A' 6 A" 18 A'
-- Virtual --
0.029 0.040 0.111 0.144 0.194 0.290 0.290 0.297
19 A' 7 A" 20 A' 21 A' 22 A' 23 A' 8 A" 24 A'
0.300 0.300 0.335 0.346 0.352 0.398 0.476 0.536
25 A' 9 A" 26 A' 10 A" 27 A' 28 A' 11 A" 12 A"
0.545 0.568 0.644 0.657 0.692 0.861 0.936 0.977
29 A' 30 A' 31 A' 32 A' 13 A" 33 A' 34 A' 35 A'
1.003 1.037 1.047 1.081 1.123 1.144 1.147 1.167
14 A" 36 A' 15 A" 16 A" 37 A' 17 A" 38 A' 18 A"
1.208 1.216 1.249 1.255 1.332 1.458 1.562 1.848
39 A' 40 A' 41 A' 19 A" 42 A' 43 A' 44 A' 20 A"
1.900 1.925 1.932 1.994 2.002 2.080 2.149 2.152
45 A' 21 A" 46 A' 22 A" 47 A' 48 A' 23 A" 49 A'
2.175 2.198 2.263 2.310 2.409 2.445 2.532 2.815
50 A' 24 A" 51 A' 25 A" 52 A' 26 A" 53 A' 54 A'
2.908 3.257 3.589 3.604 3.972 4.061 4.248 4.298
55 A' 56 A' 27 A" 57 A' 28 A" 58 A' 59 A' 29 A"
4.335 4.647 5.815
60 A' 61 A' 62 A'
Beta MOs, Restricted
-- Occupied --
-378.83 -91.93 -48.18 -42.50 -42.50 -42.50 -8.93 -6.61
1 A' 2 A' 3 A' 4 A' 1 A" 5 A' 6 A' 7 A'
-6.613 -6.612 -6.406 -4.496 -4.495 -4.491 -1.209 -1.209
8 A' 2 A" 9 A' 10 A' 3 A" 11 A' 12 A' 4 A"
-1.205 -1.204 -1.203 -0.933 -0.536 -0.480 -0.367 -0.316
13 A' 14 A' 5 A" 15 A' 16 A' 17 A' 6 A" 18 A'
-- Virtual --
0.029 0.040 0.111 0.144 0.194 0.290 0.290 0.297
19 A' 7 A" 20 A' 21 A' 22 A' 23 A' 8 A" 24 A'
0.300 0.300 0.335 0.346 0.352 0.398 0.476 0.536
25 A' 9 A" 26 A' 10 A" 27 A' 28 A' 11 A" 12 A"
0.545 0.568 0.644 0.657 0.692 0.861 0.936 0.977
29 A' 30 A' 31 A' 32 A' 13 A" 33 A' 34 A' 35 A'
1.003 1.037 1.047 1.081 1.123 1.144 1.147 1.167
14 A" 36 A' 15 A" 16 A" 37 A' 17 A" 38 A' 18 A"
1.208 1.216 1.249 1.255 1.332 1.458 1.562 1.848
39 A' 40 A' 41 A' 19 A" 42 A' 43 A' 44 A' 20 A"
1.900 1.925 1.932 1.994 2.002 2.080 2.149 2.152
45 A' 21 A" 46 A' 22 A" 47 A' 48 A' 23 A" 49 A'
2.175 2.198 2.263 2.310 2.409 2.445 2.532 2.815
50 A' 24 A" 51 A' 25 A" 52 A' 26 A" 53 A' 54 A'
2.908 3.257 3.589 3.604 3.972 4.061 4.248 4.298
55 A' 56 A' 27 A" 57 A' 28 A" 58 A' 59 A' 29 A"
4.335 4.647 5.815
60 A' 61 A' 62 A'
Occupation and symmetry of molecular orbitals
Point group: Cs (2 irreducible representations).
A' A" All
------------------------------------------
All molecular orbitals:
- Alpha 62 29 91
- Beta 62 29 91
------------------------------------------
Alpha orbitals:
- Frozen occupied 11 3 14
- Active occupied 7 3 10
- Active virtual 44 23 67
- Frozen virtual 0 0 0
------------------------------------------
Beta orbitals:
- Frozen occupied 11 3 14
- Active occupied 7 3 10
- Active virtual 44 23 67
- Frozen virtual 0 0 0
------------------------------------------
Import integrals: CPU 0.00 s wall 0.00 s
Import integrals: CPU 13.94 s wall 3.59 s
MP2 amplitudes: CPU 0.11 s wall 0.08 s
Running a double precision version
CCSD T amplitudes will be solved using DIIS.
Start Size MaxIter EConv TConv
3 7 100 1.00e-06 1.00e-04
------------------------------------------------------------------------------
Energy (a.u.) Ediff Tdiff Comment
------------------------------------------------------------------------------
-2321.76077103
1 -2321.77252703 1.18e-02 5.90e-01
2 -2321.78358277 1.11e-02 8.05e-02
3 -2321.78436049 7.78e-04 3.04e-02
4 -2321.78584024 1.48e-03 1.24e-02 Switched to DIIS steps.
5 -2321.78607008 2.30e-04 7.55e-03
6 -2321.78606235 7.73e-06 1.32e-03
7 -2321.78606865 6.30e-06 4.66e-04
8 -2321.78606766 9.95e-07 2.74e-04
9 -2321.78606858 9.28e-07 8.39e-05
------------------------------------------------------------------------------
-2321.78606858 CCSD T converged.
End of double precision
SCF energy = -2321.45641758
MP2 energy = -2321.76077103
CCSD correlation energy = -0.32965100
CCSD total energy = -2321.78606858
CCSD T1^2 = 0.0068 T2^2 = 0.1724 Leading amplitudes:
Amplitude Orbitals with energies
-0.0247 6 (A") A -> 7 (A") A
-0.3671 0.0402
-0.0247 6 (A") B -> 7 (A") B
-0.3671 0.0402
-0.0168 17 (A') A -> 20 (A') A
-0.4799 0.1109
-0.0168 17 (A') B -> 20 (A') B
-0.4799 0.1109
Amplitude Orbitals with energies
-0.0660 18 (A') A 18 (A') B -> 19 (A') A 19 (A') B
-0.3164 -0.3164 0.0289 0.0289
0.0660 18 (A') A 18 (A') B -> 19 (A') B 19 (A') A
-0.3164 -0.3164 0.0289 0.0289
0.0660 18 (A') B 18 (A') A -> 19 (A') A 19 (A') B
-0.3164 -0.3164 0.0289 0.0289
-0.0660 18 (A') B 18 (A') A -> 19 (A') B 19 (A') A
-0.3164 -0.3164 0.0289 0.0289
Computing CCSD intermediates for later calculations in double precision
Finished.
Running a double precision version
CCSD Lambda amplitudes will be solved using DIIS.
Start Size MaxIter EConv LConv
3 7 100 1.00e-06 1.00e-04
------------------------------------------------------------------------------
Enorm Ldiff Comment
------------------------------------------------------------------------------
1 4.22e-02 3.33e-02
2 1.11e-02 5.99e-03
3 3.98e-03 1.48e-03
4 2.00e-03 8.69e-04 Switched to DIIS steps.
5 6.10e-04 5.63e-04
6 2.38e-04 9.60e-05
7 9.69e-05 1.29e-05
8 2.77e-05 3.66e-06
9 1.06e-05 1.37e-06
10 4.72e-06 1.23e-07
11 2.11e-06 3.32e-08
12 8.98e-07 1.01e-07
------------------------------------------------------------------------------
CCSD Lambda converged.
Reference state properties
S^2 calculation will be performed in double precision
<S^2> = 0.000000
CCSD calculation: CPU 33.39 s wall 6.32 s
Solving for EOMEE-CCSD A' triplet states.
Running a double precision version
EOMEE-CCSD/MP2 right amplitudes will be solved using Davidson.
Amplitudes will be solved using standard algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
1 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 1 7.76e-02 4.5821
1 0 2 4.01e-02 3.3990
2 0 3 4.03e-03 2.7177
3 0 4 4.22e-04 2.6490
4 0 5 7.87e-05 2.6410
5 0 6 1.70e-05 2.6397
6 1 7 5.02e-06 2.6391*
Davidson procedure converged
EOMEE transition 1/A'
Total energy = -2321.68908511 a.u. Excitation energy = 2.6391 eV.
R0^2 = 0.0000 R1^2 = 0.9638 R2^2 = 0.0362 Res^2 = 5.02e-06
Conv-d = yes
Amplitude Transitions between orbitals
-0.6692 18 (A') A -> 19 (A') A
0.6692 18 (A') B -> 19 (A') B
-0.0922 18 (A') A -> 23 (A') A
0.0922 18 (A') B -> 23 (A') B
Summary of significant orbitals:
Number Type Irrep Energy
24 Occ Alpha 18 (A') -0.3164
24 Occ Beta 18 (A') -0.3164
25 Vir Alpha 19 (A') 0.0289
30 Vir Alpha 23 (A') 0.2896
25 Vir Beta 19 (A') 0.0289
30 Vir Beta 23 (A') 0.2896
EEs and amplitudes of EOMEE has be exported to fchk file
Running a double precision version
EOM-CCSD/MP2 left amplitudes will be solved using Davidson.
Amplitudes will be solved using MOM algorithm.
Hard-coded thresholds:
LinDepThresh=1.00e-15 NormThresh=1.00e-06 ReorthogonThresh=1.00e-02
Roots MaxVec MaxIter Precond Conv Shift
1 120 60 1 1.00e-05 0.00e+00
------------------------------------------------------------------------------
Iter ConvRoots NVecs ResNorm Current eigenvalues (eV)
------------------------------------------------------------------------------
0 0 1 1.42e-03 2.6391
1 0 2 4.26e-04 2.6390
2 0 3 3.39e-05 2.6390
3 1 4 5.20e-06 2.6389*
Davidson procedure converged
EOMEE-CCSD transition 1/A'
S^2 calculation will be performed in double precision
Excited state properties for EOMEE-CCSD transition 1/A'
Dipole moment (a.u.): 0.420190 (X -0.262312, Y 0.328256, Z 0.000000)
R-squared (a.u.): 282.342302 (XX 229.033498, YY 30.652318, ZZ 22.656487)
Gauge origin (a.u.): (0.000000, 0.000000, 0.000000)
Angular momentum (a.u.) against gauge origin:
(X 0.000000i, Y 0.000000i, Z 0.017894i)
Traces of the OPDMs: Tr(AA) 24.000000, Tr(BB) 24.000000
<S^2> = 2.000000
EOMEE-CCSD calculation: CPU 19.33 s wall 3.69 s
Start computing the transition properties
------------------------------------------------------------------------------
The new SOC module will be executed
Authors: Pavel Pokhilko and Evgeny Epifanovsky
SOC 1e and mf integrals are evaluating by libqints...
1e SO integrals: CPU 0.16 s wall 0.02 s
Failed to compute integrals!