Hello Pavel,
Thank you for your answer ! Here is my input :
$molecule
0 3
C 2.5966427852 -1.2393492541 -1.0784209758
C 1.5220381266 -0.3772216297 -0.9065356038
C 1.6105825520 0.6433461108 0.0475429007
C 2.7763544628 0.8026336343 0.8082420550
C 3.8398801228 -0.0575595086 0.6165646981
C 3.7531765490 -1.0820557447 -0.3265728871
H 2.5267508339 -2.0453491755 -1.8072421342
H 0.6027320544 -0.4911963779 -1.4764328109
H 2.8091906124 1.6028763341 1.5450295564
H 4.7481966034 0.0641157018 1.2037892847
H 4.5910026797 -1.7630090528 -0.4659678738
N 0.5045242746 1.4285371024 0.3585204696
N -0.5006068750 1.4189124433 -0.4068150802
C -1.6092046713 0.6472707078 -0.0720281171
C -2.7753566269 0.7882678347 -0.8358264729
C -1.5231998581 -0.3450503298 0.9116910256
C -3.8419561037 -0.0616172545 -0.6172558572
H -2.8060802388 1.5657124367 -1.5967316505
C -2.6009099028 -1.1974252193 1.1105170490
H -0.6034930745 -0.4458318677 1.4833771069
C -3.7579596902 -1.0579259464 0.3559171740
H -4.7505667016 0.0460316975 -1.2067298330
H -2.5331432601 -1.9812425107 1.8633562809
H -4.5984424602 -1.7307891268 0.5168515430
$end
$rem
BASIS = 6-311G**
CIS_N_ROOTS = 4
CIS_MAX_CYCLES = 200
CIS_CONVERGENCE = 6
EXCHANGE = M11
GUI = 0
JOB_TYPE = SP
SCF_CONVERGENCE = 6
SCF_MAX_CYCLES = 200
SPIN_FLIP = 1
CALC_SOC = 2
$end
Here the output of the spin-flip :
Excited state 1: excitation energy (eV) = -0.0012
Total energy for state 1: -572.48746231 au
<S**2> : 0.1099
D( 44) → S( 1) amplitude = 0.2560
S( 1) → S( 2) amplitude = 0.2513 alpha
S( 2) → S( 1) amplitude = 0.8831 alpha
S( 2) → V( 3) amplitude = 0.1516 alpha
Excited state 2: excitation energy (eV) = 0.0888
Total energy for state 2: -572.48415504 au
<S**2> : 2.1657
D( 45) → S( 1) amplitude = 0.2420
S( 1) → S( 1) amplitude = 0.6443 alpha
S( 2) → S( 2) amplitude = 0.6187 alpha
Excited state 3: excitation energy (eV) = 0.7423
Total energy for state 3: -572.46013920 au
<S**2> : 0.1452
D( 44) → S( 2) amplitude = 0.2318
D( 45) → S( 1) amplitude = -0.3635
S( 1) → S( 1) amplitude = -0.5350 alpha
S( 2) → S( 2) amplitude = 0.6323 alpha
S( 2) → V( 6) amplitude = -0.1605 alpha
Excited state 4: excitation energy (eV) = 1.5175
Total energy for state 4: -572.43165418 au
<S**2> : 0.1423
D( 44) → S( 1) amplitude = -0.1844
D( 45) → S( 2) amplitude = 0.3374
S( 1) → S( 2) amplitude = 0.8263 alpha
S( 1) → V( 6) amplitude = -0.1819 alpha
S( 2) → S( 1) amplitude = -0.1968 alpha
So if I understood well, I should look at the SOC between excited state 1 and 2 for the SOCC between T1 and S0 ?
Here the ouput for SOC :
State A: Root 1
State B: Root 2
Analysing Sz ans S^2 of the pair of states…
Ket state: Computed S^2 = 0.109897241 will be treated as 0.000000000 Sz = 0.000000000
Bra state: Computed S^2 = 2.165674754 will be treated as 2.000000000 Sz = 0.000000000
Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|1.000,0.000> = 1.000
One-electron SO (cm-1)
Reduced matrix elements:
<S|| Hso(L-) ||S’> = (-7.026738,29.142119)
<S|| Hso(L0) ||S’> = (0.000000,0.000772)
<S|| Hso(L+) ||S’> = (-7.026738,-29.142119)
SOCC = 42.394296
Actual matrix elements:
|Sz=0.00>
<Sz=-1.00|(-7.026738,-29.142119)
<Sz=0.00|(0.000000,0.000772)
<Sz=1.00|(-7.026738,29.142119)
Mean-field SO (cm-1)
Reduced matrix elements:
<S|| Hso(L-) ||S’> = (-4.024831,16.978996)
<S|| Hso(L0) ||S’> = (0.000000,0.000448)
<S|| Hso(L+) ||S’> = (-4.024043,-16.971654)
Singlet part of <S|| Hso(L0) ||S’> = (-0.000000,-0.000001) (excluded from all matrix elements)
L-/L+ Averaged reduced matrix elements:
<S|| Hso(L-) ||S’> = (-4.024437,16.975325)
<S|| Hso(L+) ||S’> = (-4.024437,-16.975325)
SOCC = 24.672160
Actual matrix elements:
|Sz=0.00>
<Sz=-1.00|(-4.024437,-16.975325)
<Sz=0.00|(0.000000,0.000448)
<Sz=1.00|(-4.024437,16.975325)
Should I take the 24.67 (Mean-field SO) or the 42.39 (One-electron SO) ? I’m not sure which one to use.
Thank you in advance !