Greetings everyone, I have been delving into the results of time-dependent density functional theory (TDDFT) and noticed something. When I enabled the random phase approximation (RPA) for a doublet system, initially the TDDFT/TDA excitation energies were accompanied by <S^22> value. However, subsequently, the TDDFT excitation energies appeared without a <S^2> value. I am now pondering how to assign the multiplicity for these TDDFT excitation energies.
Input file:
$rem
jobtype = SP
method = wB97M-V
basis = def2-SVP
cis_n_roots = 25
RPA = true
thresh = 10
scf_convergence = 6
max_scf_cycles = 500
sym_ignore = true
gui = 2
$end
Output file:
TDDFT/TDA Excitation Energies
Excited state 1: excitation energy (eV) = 1.2249
Total energy for state 1: -3934.71082846 au
<S**2> : 0.7533
Trans. Mom.: -0.0834 X 0.0016 Y -0.0270 Z
Strength : 0.0002305629
D( 163) → S( 1) amplitude = 0.1816 beta
D( 166) → S( 1) amplitude = -0.2613 beta
D( 179) → S( 1) amplitude = 0.2070 beta
D( 180) → S( 1) amplitude = 0.1846 beta
D( 182) → S( 1) amplitude = -0.1569 beta
D( 185) → S( 1) amplitude = -0.3069 beta
D( 205) → S( 1) amplitude = -0.6965 beta
TDDFT Excitation Energies
Excited state 1: excitation energy (eV) = 1.1779
Total energy for state 1: -3934.71255431 au
Trans. Mom.: -0.0787 X 0.0011 Y -0.0260 Z
Strength : 0.0001983889
X: D( 163) → S( 1) amplitude = 0.1822 beta
X: D( 166) → S( 1) amplitude = -0.2617 beta
X: D( 179) → S( 1) amplitude = 0.2082 beta
X: D( 180) → S( 1) amplitude = 0.1857 beta
X: D( 182) → S( 1) amplitude = -0.1583 beta
X: D( 185) → S( 1) amplitude = -0.3080 beta
X: D( 205) → S( 1) amplitude = -0.6959 beta
Thank you for your attention.