"TransDip" printed out in the vibrational analysis

Is it true that the transition dipoles printed out under the vibrational analysis are in atomic units?

 Mode:                34                     35                     36
 Frequency:      1699.75                2386.96                3081.95
 Force Cnst:     10.4112                42.5762                 5.8056
 Red. Mass:       6.1162                12.6831                 1.0374
 IR Active:          YES                    YES                    YES
 IR Intens:        8.313                 39.345                 13.542
 Raman Active:       YES                    YES                    YES
               X      Y      Z        X      Y      Z        X      Y      Z
 C          0.059  0.331  0.108    0.001  0.003  0.003   -0.000  0.001 -0.000
 C          0.002 -0.213 -0.002   -0.001  0.001 -0.001   -0.000 -0.000 -0.000
 C          0.083  0.159  0.145    0.003  0.003  0.006    0.000 -0.000  0.000
 C         -0.069 -0.319 -0.125   -0.002 -0.007 -0.004    0.000 -0.000  0.000
 C          0.017  0.224  0.034   -0.045 -0.071 -0.078   -0.000  0.000 -0.001
 C         -0.068 -0.217 -0.121   -0.003 -0.001 -0.006   -0.000  0.001  0.000
 C          0.003  0.036  0.006   -0.001 -0.001 -0.001   -0.002 -0.052 -0.001
 H         -0.074 -0.390 -0.135    0.001  0.000  0.001    0.003 -0.003  0.005
 H         -0.126  0.065 -0.216   -0.000 -0.001 -0.001    0.000 -0.000  0.001
 H         -0.123  0.119 -0.209    0.000  0.002  0.000   -0.000  0.001 -0.000
 H          0.060  0.408  0.111   -0.004  0.003 -0.006   -0.000 -0.000 -0.001
 H          0.063  0.083  0.016    0.009 -0.000  0.002   -0.282  0.247  0.477
 H         -0.016 -0.124 -0.026   -0.001 -0.006 -0.002   -0.258  0.096 -0.405
 H         -0.011  0.079  0.064   -0.002 -0.000  0.009    0.567  0.255 -0.055
 C          0.003 -0.009  0.005    0.313  0.497  0.546    0.000  0.000  0.000
 N         -0.009 -0.010 -0.015   -0.228 -0.363 -0.398   -0.000  0.000 -0.000
 TransDip  -0.014 -0.088 -0.025    0.083  0.114  0.144    0.019 -0.111  0.034

I assume so but wanted to confirm.

I am not 100% certain but that appears to be the case. I see that dipole derivative integrals are read from disk (where they are almost certainly in atomic units) and then transformed from Cartesians to normal coordinates. I don’t see any change-of-units factors.

You could test using a heteronuclear diatomic where the matrix element is simple to calculate.

I tested a HF molecule using Q-Chem and ORCA (using the same geometry optimized using PBE0/def2-SVP). The results are:
Q-Chem (the first two lines are from vibman_print = 4):

 Vibrational Frequencies in atomic units
    -0.0000000000   -0.0000000000   -0.0000000000    0.0000000000    0.0000000000    0.6543169287
 Vibrational Electric Transition dipole:  1      0.00000000000000    0.00000000000000    0.33836378355129
 **********************************************************************
 **                                                                  **
 **                       VIBRATIONAL ANALYSIS                       **
 **                       --------------------                       **
 **                                                                  **
 **        VIBRATIONAL FREQUENCIES (CM**-1) AND NORMAL MODES         **
 **     FORCE CONSTANTS (mDYN/ANGSTROM) AND REDUCED MASSES (AMU)     **
 **                  INFRARED INTENSITIES (KM/MOL)                   **
 **                                                                  **
 **********************************************************************
  Mode:                 1
 Frequency:      4158.15
 Force Cnst:     10.7811
 Red. Mass:       1.0583
 IR Active:          YES
 IR Intens:      111.614
 Raman Active:       YES
               X      Y      Z        
 H         -0.000  0.000  0.999
 F         -0.000 -0.000 -0.053
 TransDip   0.000  0.000  0.338

ORCA (with RI turned off):

------------
NORMAL MODES
------------

These modes are the Cartesian displacements weighted by the diagonal matrix
M(i,i)=1/sqrt(m[i]) where m[i] is the mass of the displaced atom 
Thus, these vectors are normalized but *not* orthogonal

                  0          1          2          3          4          5
      0       0.000000   0.000000   0.000000   0.000000   0.000000   0.000000
      1       0.000000   0.000000   0.000000   0.000000   0.000000   0.000000
      2       0.000000   0.000000   0.000000   0.000000   0.000000  -0.998595
      3       0.000000   0.000000   0.000000   0.000000   0.000000   0.000000
      4       0.000000   0.000000   0.000000   0.000000   0.000000   0.000000
      5       0.000000   0.000000   0.000000   0.000000   0.000000   0.052984

-----------
IR SPECTRUM
-----------

 Mode   freq       eps      Int      T**2         TX        TY        TZ
       cm**-1   L/(mol*cm) km/mol    a.u. 
----------------------------------------------------------------------------
  5:   4158.49   0.022048  111.42  0.001655  ( 0.000000  0.000000 -0.040676)

* The epsilon (eps) is given for a Dirac delta lineshape.
** The dipole moment derivative (T) already includes vibrational overlap.

The frequencies and intensities in km/mol are in good agreement. I suppose that the TX, TY, and TZ values in ORCA are the dipole derivatives in au, but I still couldn’t figure out they might be related to the “TransDip” value in Q-Chem. I was thinking that there should be a factor of sqrt[hbar/(2*mu * omega)] from the dipole derivatives to the transition dipole integral, but the number is still an order of magnitude off compared to the Q-Chem “TransDip” values after substituting the reduced mass and frequency in a.u. into that.