Hello,
We are currently trying to perform SOC computation on silicon quantum dots with the TD-DFT method and we wanted to evaluate the soundness of the results.
After trying a calculation using the B3LYP/def2-SVP method on a Ca atom and comparing it to the NIST values, the results appear to be quite bad.
This is the input we’ve used for the calculation:
$molecule
0 1
Ca 0.0 0.0 0.0
$end
$rem
MEM_TOTAL 1000
MEM_STATIC 200
JOBTYPE sp
EXCHANGE b3lyp
BASIS def2-svp
SCF_ALGORITHM diis
MAX_SCF_CYCLES 100
CIS_N_ROOTS 5
CIS_SINGLETS true
CIS_TRIPLETS true
STS_MOM true
CALC_SOC true
IQMOL_FCHK True
$end
This is the output of the calculation:
----------------------------------------------------------------
Standard Nuclear Orientation (Angstroms)
I Atom X Y Z
----------------------------------------------------------------
1 Ca 0.0000000000 0.0000000000 0.0000000000
----------------------------------------------------------------
Molecular Point Group Kh NOp =***
Largest Abelian Subgroup D2h NOp = 1
Nuclear Repulsion Energy = 0.00000000 hartrees
There are 10 alpha and 10 beta electrons
Requested basis set is def2-SVP
There are 10 shells and 24 basis functions
Total QAlloc Memory Limit 1000 MB
Mega-Array Size 196 MB
MEM_STATIC part 200 MB
A cutoff of 1.0D-11 yielded 55 shell pairs
There are 329 function pairs ( 390 Cartesian)
Smallest overlap matrix eigenvalue = 1.22E-01
Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01
Standard Electronic Orientation quadrupole field applied
Guess from superposition of atomic densities
Warning: Energy on first SCF cycle will be non-variational
SAD guess density has 20.000000 electrons
-----------------------------------------------------------------------
General SCF calculation program by
Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
Bang C. Huynh
-----------------------------------------------------------------------
Exchange: 0.2000 Hartree-Fock + 0.0800 Slater + 0.7200 B88
Correlation: 0.1900 VWN1RPA + 0.8100 LYP
Using SG-1 standard quadrature grid
using 2 threads for integral computing
-------------------------------------------------------
OpenMP Integral computing Module
Release: version 1.0, May 2013, Q-Chem Inc. Pittsburgh
-------------------------------------------------------
A restricted SCF calculation will be
performed using DIIS
SCF converges when DIIS error is below 1.0e-08
---------------------------------------
Cycle Energy DIIS error
---------------------------------------
1 -677.4893010978 4.24e-03
2 -677.4910087559 2.49e-04
3 -677.4910160572 2.93e-05
4 -677.4910161880 1.33e-06
5 -677.4910161882 4.10e-09 Convergence criterion met
---------------------------------------
SCF time: CPU 0.60s wall 1.00s
SCF energy in the final basis set = -677.4910161882
Total energy in the final basis set = -677.4910161882
Direct TDDFT/TDA calculation will be performed
Exchange: 0.2000 Hartree-Fock + 0.0800 Slater + 0.7200 B88
Correlation: 0.1900 VWN1RPA + 0.8100 LYP
Using SG-1 standard quadrature grid
Triplet excitation energies requested
Singlet excitation energies requested
CIS energy converged when residual is below 10e- 6
---------------------------------------------------
Iter Rts Conv Rts Left Ttl Dev Max Dev
---------------------------------------------------
1 0 5 0.002607 0.000521
2 0 5 0.000161 0.000032
3 0 5 0.000007 0.000001
4 5 0 0.000000 0.000000 Roots Converged
---------------------------------------------------
Triplets done: starting singlet calculation
---------------------------------------------------
Iter Rts Conv Rts Left Ttl Dev Max Dev
---------------------------------------------------
5 0 5 0.005365 0.001073
6 0 5 0.000724 0.000145
7 0 5 0.000013 0.000003
8 5 0 0.000000 0.000000 Roots Converged
---------------------------------------------------
---------------------------------------------------
TDDFT/TDA Excitation Energies
---------------------------------------------------
Excited state 1: excitation energy (eV) = 1.7838
Total energy for state 1: -677.42546272 au
Multiplicity: Triplet
Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z
Strength : 0.0000000000
D( 10) --> V( 2) amplitude = 0.9999
Excited state 2: excitation energy (eV) = 1.7838
Total energy for state 2: -677.42546272 au
Multiplicity: Triplet
Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z
Strength : 0.0000000000
D( 10) --> V( 1) amplitude = 0.9999
Excited state 3: excitation energy (eV) = 1.7838
Total energy for state 3: -677.42546272 au
Multiplicity: Triplet
Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z
Strength : 0.0000000000
D( 10) --> V( 4) amplitude = 0.9999
Excited state 4: excitation energy (eV) = 1.7838
Total energy for state 4: -677.42546272 au
Multiplicity: Triplet
Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z
Strength : 0.0000000000
D( 10) --> V( 3) amplitude = 0.9999
Excited state 5: excitation energy (eV) = 1.7838
Total energy for state 5: -677.42546272 au
Multiplicity: Triplet
Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z
Strength : 0.0000000000
D( 10) --> V( 5) amplitude = 0.9999
Excited state 6: excitation energy (eV) = 2.2924
Total energy for state 6: -677.40677104 au
Multiplicity: Singlet
Trans. Mom.: -0.0000 X -0.0000 Y 0.0000 Z
Strength : 0.0000000000
D( 10) --> V( 1) amplitude = 0.9985
Excited state 7: excitation energy (eV) = 2.2924
Total energy for state 7: -677.40677104 au
Multiplicity: Singlet
Trans. Mom.: 0.0000 X -0.0000 Y 0.0000 Z
Strength : 0.0000000000
D( 10) --> V( 2) amplitude = 0.9985
Excited state 8: excitation energy (eV) = 2.2924
Total energy for state 8: -677.40677104 au
Multiplicity: Singlet
Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z
Strength : 0.0000000000
D( 10) --> V( 3) amplitude = 0.9985
Excited state 9: excitation energy (eV) = 2.2924
Total energy for state 9: -677.40677104 au
Multiplicity: Singlet
Trans. Mom.: 0.0000 X 0.0000 Y -0.0000 Z
Strength : 0.0000000000
D( 10) --> V( 4) amplitude = 0.9985
Excited state 10: excitation energy (eV) = 2.2924
Total energy for state 10: -677.40677104 au
Multiplicity: Singlet
Trans. Mom.: 0.0000 X -0.0000 Y 0.0000 Z
Strength : 0.0000000000
D( 10) --> V( 5) amplitude = 0.9985
---------------------------------------------------
SETman timing summary (seconds)
CPU time 1.09s
System time 0.00s
Wall time 0.66s
*********SPIN-ORBIT COUPLING JOB BEGINS HERE*********
=======================================================================================
SPIN-ORBIT COUPLING BETWEEN THE SINGLET GROUND STATE AND EXCITED TRIPLET STATE
=======================================================================================
SOC between the singlet ground state and excited triplet states (ms=0):
T1(ms=0) 0.000000 + 0.000000i cm-1
T2(ms=0) 0.000000 + 0.000000i cm-1
T3(ms=0) 0.000000 + -0.000000i cm-1
T4(ms=0) 0.000000 + 0.000000i cm-1
T5(ms=0) 0.000000 + 0.000000i cm-1
SOC between the singlet ground state and excited triplet states (ms=1):
T1(ms=1) -0.000000 + (-0.000000i) cm-1
T2(ms=1) -0.000000 + (-0.000000i) cm-1
T3(ms=1) -0.000000 + (0.000000i) cm-1
T4(ms=1) 0.000000 + (0.000000i) cm-1
T5(ms=1) 0.000000 + (-0.000000i) cm-1
SOC between the singlet ground state and excited triplet states (ms=-1):
T1(ms=-1) -0.000000 - (-0.000000i) cm-1
T2(ms=-1) -0.000000 - (-0.000000i) cm-1
T3(ms=-1) -0.000000 - (0.000000i) cm-1
T4(ms=-1) 0.000000 - (0.000000i) cm-1
T5(ms=-1) 0.000000 - (-0.000000i) cm-1
Total SOC between the singlet ground state and excited triplet states:
T1 0.000000 cm-1
T2 0.000000 cm-1
T3 0.000000 cm-1
T4 0.000000 cm-1
T5 0.000000 cm-1
=======================================================================================
SPIN-ORBIT COUPLING BETWEEN EXCITED TRIPLET STATES
=======================================================================================
SOC between the T1 (ms=0) state and excited triplet states (ms=1):
T2(ms=1) -39.185965 + (0.000091i) cm-1
T3(ms=1) -0.000179 + (-21.540613i) cm-1
T4(ms=1) 0.000001 + (0.000345i) cm-1
T5(ms=1) 17.901179 + (-0.000003i) cm-1
SOC between the T1 (ms=0) state and excited triplet states (ms=-1):
T2(ms=-1) 39.185965 + (0.000091i) cm-1
T3(ms=-1) 0.000179 + (-21.540613i) cm-1
T4(ms=-1) -0.000001 + (0.000345i) cm-1
T5(ms=-1) -17.901179 + (-0.000003i) cm-1
SOC between the T1 (ms=1) state and excited triplet states (ms=0):
T2(ms=0) 39.185965 + (0.000091i) cm-1
T3(ms=0) 0.000179 + (-21.540613i) cm-1
T4(ms=0) -0.000001 + (0.000345i) cm-1
T5(ms=0) -17.901179 + (-0.000003i) cm-1
SOC between the T1 (ms=1) state and excited triplet states (ms=1):
T2(ms=1) 0.000000 + (-0.000048i) cm-1
T3(ms=1) 0.000000 + (0.000519i) cm-1
T4(ms=1) 0.000000 + (30.463028i) cm-1
T5(ms=1) 0.000000 + (-0.000056i) cm-1
SOC between the T1 (ms=-1) state and excited triplet states (ms=0):
T2(ms=0) -39.185965 + (0.000091i) cm-1
T3(ms=0) -0.000179 + (-21.540613i) cm-1
T4(ms=0) 0.000001 + (0.000345i) cm-1
T5(ms=0) 17.901179 + (-0.000003i) cm-1
SOC between the T1 (ms=-1) state and excited triplet states (ms=-1):
T2(ms=-1) 0.000000 + (0.000048i) cm-1
T3(ms=-1) 0.000000 + (-0.000519i) cm-1
T4(ms=-1) 0.000000 + (-30.463028i) cm-1
T5(ms=-1) 0.000000 + (0.000056i) cm-1
Total SOC between the T1 state and excited triplet states:
T2 78.371931 cm-1
T3 43.081227 cm-1
T4 43.081227 cm-1
T5 35.802358 cm-1
SOC between the T2 (ms=0) state and excited triplet states (ms=1):
T3(ms=1) -0.000014 + (-0.000581i) cm-1
T4(ms=1) 0.000103 + (-35.095859i) cm-1
T5(ms=1) -0.000013 + (0.000060i) cm-1
SOC between the T2 (ms=0) state and excited triplet states (ms=-1):
T3(ms=-1) 0.000014 + (-0.000581i) cm-1
T4(ms=-1) -0.000103 + (-35.095859i) cm-1
T5(ms=-1) 0.000013 + (0.000060i) cm-1
SOC between the T2 (ms=1) state and excited triplet states (ms=0):
T3(ms=0) 0.000014 + (-0.000581i) cm-1
T4(ms=0) -0.000103 + (-35.095859i) cm-1
T5(ms=0) 0.000013 + (0.000060i) cm-1
SOC between the T2 (ms=1) state and excited triplet states (ms=1):
T3(ms=1) 0.000000 + (-5.784285i) cm-1
T4(ms=1) 0.000000 + (0.000086i) cm-1
T5(ms=1) 0.000000 + (0.000273i) cm-1
SOC between the T2 (ms=-1) state and excited triplet states (ms=0):
T3(ms=0) -0.000014 + (-0.000581i) cm-1
T4(ms=0) 0.000103 + (-35.095859i) cm-1
T5(ms=0) -0.000013 + (0.000060i) cm-1
SOC between the T2 (ms=-1) state and excited triplet states (ms=-1):
T3(ms=-1) 0.000000 + (5.784285i) cm-1
T4(ms=-1) 0.000000 + (-0.000086i) cm-1
T5(ms=-1) 0.000000 + (-0.000273i) cm-1
Total SOC between the T2 state and excited triplet states:
T3 8.180214 cm-1
T4 70.191717 cm-1
T5 0.000406 cm-1
SOC between the T3 (ms=0) state and excited triplet states (ms=1):
T4(ms=1) -21.540613 + (-0.000156i) cm-1
T5(ms=1) 0.000068 + (0.000415i) cm-1
SOC between the T3 (ms=0) state and excited triplet states (ms=-1):
T4(ms=-1) 21.540613 + (-0.000156i) cm-1
T5(ms=-1) -0.000068 + (0.000415i) cm-1
SOC between the T3 (ms=1) state and excited triplet states (ms=0):
T4(ms=0) 21.540613 + (-0.000156i) cm-1
T5(ms=0) -0.000068 + (0.000415i) cm-1
SOC between the T3 (ms=1) state and excited triplet states (ms=1):
T4(ms=1) 0.000000 + (-0.000145i) cm-1
T5(ms=1) 0.000000 + (-60.650855i) cm-1
SOC between the T3 (ms=-1) state and excited triplet states (ms=0):
T4(ms=0) -21.540613 + (-0.000156i) cm-1
T5(ms=0) 0.000068 + (0.000415i) cm-1
SOC between the T3 (ms=-1) state and excited triplet states (ms=-1):
T4(ms=-1) 0.000000 + (0.000145i) cm-1
T5(ms=-1) 0.000000 + (60.650855i) cm-1
Total SOC between the T3 state and excited triplet states:
T4 43.081227 cm-1
T5 85.773262 cm-1
SOC between the T4 (ms=0) state and excited triplet states (ms=1):
T5(ms=1) 0.000001 + (24.985452i) cm-1
SOC between the T4 (ms=0) state and excited triplet states (ms=-1):
T5(ms=-1) -0.000001 + (24.985452i) cm-1
SOC between the T4 (ms=1) state and excited triplet states (ms=0):
T5(ms=0) -0.000001 + (24.985452i) cm-1
SOC between the T4 (ms=1) state and excited triplet states (ms=1):
T5(ms=1) 0.000000 + (0.001022i) cm-1
SOC between the T4 (ms=-1) state and excited triplet states (ms=0):
T5(ms=0) 0.000001 + (24.985452i) cm-1
SOC between the T4 (ms=-1) state and excited triplet states (ms=-1):
T5(ms=-1) 0.000000 + (-0.001022i) cm-1
Total SOC between the T4 state and excited triplet states:
T5 49.970904 cm-1
=======================================================================================
SPIN-ORBIT COUPLING BETWEEN EXCITED SINGLET STATES AND TRIPLET STATES
=======================================================================================
SOC between the S1 state and excited triplet states (ms=0):
T1(ms=0) 0.000000 + 0.000001i cm-1
T2(ms=0) 0.000000 + -0.000026i cm-1
T3(ms=0) 0.000000 + 5.990486i cm-1
T4(ms=0) 0.000000 + -0.000012i cm-1
T5(ms=0) 0.000000 + -0.000007i cm-1
SOC between the S1 state and excited triplet states (ms=1):
T1(ms=1) (40.587926) + (0.000004i) cm-1
T2(ms=1) (0.000100) + (0.000058i) cm-1
T3(ms=1) (0.000021) + (-0.000547i) cm-1
T4(ms=1) (0.000009) + (-36.352013i) cm-1
T5(ms=1) (-0.000059) + (0.000103i) cm-1
SOC between the S1 state and excited triplet states (ms=-1):
T1(ms=-1) -(40.587926) + (0.000004i) cm-1
T2(ms=-1) -(0.000100) + (0.000058i) cm-1
T3(ms=-1) -(0.000021) + (-0.000547i) cm-1
T4(ms=-1) -(0.000009) + (-36.352013i) cm-1
T5(ms=-1) -(-0.000059) + (0.000103i) cm-1
Total SOC between the S1 state and excited triplet states:
T1 57.399996 cm-1
T2 0.000166 cm-1
T3 5.990486 cm-1
T4 51.409510 cm-1
T5 0.000168 cm-1
SOC between the S2 state and excited triplet states (ms=0):
T1(ms=0) 0.000000 + 0.000010i cm-1
T2(ms=0) 0.000000 + 0.000045i cm-1
T3(ms=0) 0.000000 + -0.000513i cm-1
T4(ms=0) 0.000000 + -31.553085i cm-1
T5(ms=0) 0.000000 + 0.000106i cm-1
SOC between the S2 state and excited triplet states (ms=1):
T1(ms=1) (0.000103) + (0.000017i) cm-1
T2(ms=1) (-40.588156) + (0.000106i) cm-1
T3(ms=1) (-0.000178) + (-22.311401i) cm-1
T4(ms=1) (-0.000016) + (0.000272i) cm-1
T5(ms=1) (18.541737) + (0.000006i) cm-1
SOC between the S2 state and excited triplet states (ms=-1):
T1(ms=-1) -(0.000103) + (0.000017i) cm-1
T2(ms=-1) -(-40.588156) + (0.000106i) cm-1
T3(ms=-1) -(-0.000178) + (-22.311401i) cm-1
T4(ms=-1) -(-0.000016) + (0.000272i) cm-1
T5(ms=-1) -(18.541737) + (0.000006i) cm-1
Total SOC between the S2 state and excited triplet states:
T1 0.000148 cm-1
T2 57.400320 cm-1
T3 31.553085 cm-1
T4 31.553085 cm-1
T5 26.221975 cm-1
SOC between the S3 state and excited triplet states (ms=0):
T1(ms=0) 0.000000 + 31.553085i cm-1
T2(ms=0) 0.000000 + 0.000047i cm-1
T3(ms=0) 0.000000 + 0.000056i cm-1
T4(ms=0) 0.000000 + 0.000010i cm-1
T5(ms=0) 0.000000 + -0.000617i cm-1
SOC between the S3 state and excited triplet states (ms=1):
T1(ms=1) (-0.000002) + (-0.000200i) cm-1
T2(ms=1) (-0.000094) + (36.351693i) cm-1
T3(ms=1) (22.311401) + (0.000169i) cm-1
T4(ms=1) (-0.000157) + (0.000147i) cm-1
T5(ms=1) (-0.000005) + (25.879506i) cm-1
SOC between the S3 state and excited triplet states (ms=-1):
T1(ms=-1) -(-0.000002) + (-0.000200i) cm-1
T2(ms=-1) -(-0.000094) + (36.351693i) cm-1
T3(ms=-1) -(22.311401) + (0.000169i) cm-1
T4(ms=-1) -(-0.000157) + (0.000147i) cm-1
T5(ms=-1) -(-0.000005) + (25.879506i) cm-1
Total SOC between the S3 state and excited triplet states:
T1 31.553085 cm-1
T2 51.409057 cm-1
T3 31.553085 cm-1
T4 0.000304 cm-1
T5 36.599148 cm-1
SOC between the S4 state and excited triplet states (ms=0):
T1(ms=0) 0.000000 + 0.000316i cm-1
T2(ms=0) 0.000000 + -5.991263i cm-1
T3(ms=0) 0.000000 + -0.000013i cm-1
T4(ms=0) 0.000000 + 0.000174i cm-1
T5(ms=0) 0.000000 + 62.821123i cm-1
SOC between the S4 state and excited triplet states (ms=1):
T1(ms=1) (0.000011) + (22.311401i) cm-1
T2(ms=1) (0.000046) + (0.000346i) cm-1
T3(ms=1) (-0.000157) + (0.000017i) cm-1
T4(ms=1) (-22.311401) + (0.000003i) cm-1
T5(ms=1) (0.000056) + (0.000248i) cm-1
SOC between the S4 state and excited triplet states (ms=-1):
T1(ms=-1) -(0.000011) + (22.311401i) cm-1
T2(ms=-1) -(0.000046) + (0.000346i) cm-1
T3(ms=-1) -(-0.000157) + (0.000017i) cm-1
T4(ms=-1) -(-22.311401) + (0.000003i) cm-1
T5(ms=-1) -(0.000056) + (0.000248i) cm-1
Total SOC between the S4 state and excited triplet states:
T1 31.553085 cm-1
T2 5.991263 cm-1
T3 0.000224 cm-1
T4 31.553085 cm-1
T5 62.821123 cm-1
SOC between the S5 state and excited triplet states (ms=0):
T1(ms=0) 0.000000 + 0.000050i cm-1
T2(ms=0) 0.000000 + 0.000282i cm-1
T3(ms=0) 0.000000 + -62.821197i cm-1
T4(ms=0) 0.000000 + 0.001054i cm-1
T5(ms=0) 0.000000 + 0.000013i cm-1
SOC between the S5 state and excited triplet states (ms=1):
T1(ms=1) (-18.542239) + (0.000007i) cm-1
T2(ms=1) (0.000007) + (0.000063i) cm-1
T3(ms=1) (0.000006) + (-0.000434i) cm-1
T4(ms=1) (-0.000006) + (-25.879056i) cm-1
T5(ms=1) (0.000003) + (0.000089i) cm-1
SOC between the S5 state and excited triplet states (ms=-1):
T1(ms=-1) -(-18.542239) + (0.000007i) cm-1
T2(ms=-1) -(0.000007) + (0.000063i) cm-1
T3(ms=-1) -(0.000006) + (-0.000434i) cm-1
T4(ms=-1) -(-0.000006) + (-25.879056i) cm-1
T5(ms=-1) -(0.000003) + (0.000089i) cm-1
Total SOC between the S5 state and excited triplet states:
T1 26.222686 cm-1
T2 0.000296 cm-1
T3 62.821197 cm-1
T4 36.598512 cm-1
T5 0.000126 cm-1
*********SOC CODE ENDS HERE*********
STATE-TO-STATE TRANSITION MOMENTS
Electron Dipole Moments of Ground State
-----------------------------------------------------
State X Y Z(a.u.)
-----------------------------------------------------
0 -0.000000 0.000000 -0.000000
-----------------------------------------------------
Within CIS/TDA Excited States:
Electron Dipole Moments of Triplet Excited State
-----------------------------------------------------
State X Y Z(a.u.)
-----------------------------------------------------
1 -0.000000 0.000000 -0.000000
2 -0.000000 0.000000 -0.000000
3 -0.000000 -0.000000 -0.000000
4 -0.000000 -0.000000 -0.000000
5 -0.000000 -0.000000 -0.000000
-----------------------------------------------------
Transition Moments Between Ground and Triplet Excited States
--------------------------------------------------------------------------------
States X Y Z Strength(a.u.)
--------------------------------------------------------------------------------
0 1 0.000000 0.000000 0.000000 0
0 2 0.000000 0.000000 0.000000 0
0 3 0.000000 0.000000 0.000000 0
0 4 0.000000 0.000000 0.000000 0
0 5 0.000000 0.000000 0.000000 0
--------------------------------------------------------------------------------
Transition Moments Between Triplet Excited States
--------------------------------------------------------------------------------
States X Y Z Strength(a.u.)
--------------------------------------------------------------------------------
1 2 -0.000000 -0.000000 -0.000000 6.494388E-40
1 3 0.000000 0.000000 -0.000000 1.10427E-38
1 4 -0.000000 -0.000000 0.000000 7.99723E-39
1 5 0.000000 -0.000000 -0.000000 1.467804E-39
2 3 0.000000 0.000000 0.000000 9.336752E-39
2 4 -0.000000 -0.000000 -0.000000 1.075217E-39
2 5 0.000000 -0.000000 0.000000 3.514127E-40
3 4 -0.000000 0.000000 -0.000000 6.911698E-40
3 5 0.000000 0.000000 0.000000 4.094268E-41
4 5 0.000000 0.000000 0.000000 1.029034E-40
--------------------------------------------------------------------------------
Within CIS/TDA Excited States:
Electron Dipole Moments of Singlet Excited State
-----------------------------------------------------
State X Y Z(a.u.)
-----------------------------------------------------
6 0.000000 0.000000 -0.000000
7 0.000000 0.000000 -0.000000
8 -0.000000 0.000000 -0.000000
9 0.000000 0.000000 -0.000000
10 0.000000 0.000000 -0.000000
-----------------------------------------------------
Transition Moments Between Ground and Singlet Excited States
--------------------------------------------------------------------------------
States X Y Z Strength(a.u.)
--------------------------------------------------------------------------------
0 6 -0.000000 -0.000000 0.000000 5.094332E-31
0 7 0.000000 -0.000000 0.000000 7.969081E-30
0 8 0.000000 0.000000 0.000000 1.876901E-30
0 9 0.000000 0.000000 -0.000000 6.654994E-30
0 10 0.000000 -0.000000 0.000000 9.193339E-31
--------------------------------------------------------------------------------
Transition Moments Between Singlet Excited States
--------------------------------------------------------------------------------
States X Y Z Strength(a.u.)
--------------------------------------------------------------------------------
6 7 0.000000 0.000000 0.000000 4.688525E-41
6 8 -0.000000 0.000000 0.000000 4.849869E-41
6 9 0.000000 -0.000000 -0.000000 3.004411E-40
6 10 -0.000000 -0.000000 0.000000 1.64474E-40
7 8 0.000000 0.000000 -0.000000 2.337829E-40
7 9 -0.000000 0.000000 -0.000000 4.067484E-40
7 10 0.000000 0.000000 0.000000 3.948606E-40
8 9 0.000000 -0.000000 0.000000 2.348509E-40
8 10 0.000000 -0.000000 -0.000000 1.870286E-40
9 10 -0.000000 -0.000000 -0.000000 3.826249E-43
--------------------------------------------------------------------------------
END OF TRANSITION MOMENT CALCULATION
STSman time: CPU 0.01 s wall 0.01 s
--------------------------------------------------------------
Orbital Energies (a.u.)
--------------------------------------------------------------
Alpha MOs
-- Occupied --
******** -15.4574 -12.5920 -12.5920 -12.5920 -1.8342 -1.1075 -1.1075
-1.1075 -0.1551
-- Virtual --
-0.0277 -0.0277 -0.0277 -0.0277 -0.0277 -0.0111 -0.0111 -0.0111
0.0254 0.1680 0.1680 0.1680 0.1680 0.1680
--------------------------------------------------------------
Ground-State Mulliken Net Atomic Charges
Atom Charge (a.u.)
----------------------------------------
1 Ca -0.000000
----------------------------------------
Sum of atomic charges = 0.000000
-----------------------------------------------------------------
Cartesian Multipole Moments
-----------------------------------------------------------------
Charge (ESU x 10^10)
-0.0000
Dipole Moment (Debye)
X 0.0000 Y -0.0000 Z 0.0000
Tot 0.0000
Quadrupole Moments (Debye-Ang)
XX -23.7775 XY 0.0000 YY -23.7775
XZ 0.0000 YZ 0.0000 ZZ -23.7775
Octopole Moments (Debye-Ang^2)
XXX 0.0000 XXY -0.0000 XYY 0.0000
YYY -0.0000 XXZ 0.0000 XYZ 0.0000
YYZ 0.0000 XZZ 0.0000 YZZ -0.0000
ZZZ 0.0000
Hexadecapole Moments (Debye-Ang^3)
XXXX -85.6082 XXXY 0.0000 XXYY -28.5361
XYYY 0.0000 YYYY -85.6082 XXXZ 0.0000
XXYZ 0.0000 XYYZ 0.0000 YYYZ 0.0000
XXZZ -28.5361 XYZZ 0.0000 YYZZ -28.5361
XZZZ 0.0000 YZZZ 0.0000 ZZZZ -85.6082
-----------------------------------------------------------------
STANDARD THERMODYNAMIC QUANTITIES AT 298.15 K AND 1.00 ATM
Translational Enthalpy: 0.889 kcal/mol
Rotational Enthalpy: 0.000 kcal/mol
Vibrational Enthalpy: 0.000 kcal/mol
gas constant (RT): 0.592 kcal/mol
Translational Entropy: 36.984 cal/mol.K
Rotational Entropy: 0.000 cal/mol.K
Vibrational Entropy: 0.000 cal/mol.K
Total Enthalpy: 1.481 kcal/mol
Total Entropy: 36.984 cal/mol.K
-----------------------------------------------------------------
After diagonalising the full SOC matrix QCHEM gave me, this is what I’ve obtained:
----------------------------------------------------
Relativistic states list
----------------------------------------------------
Number Label Energy (Ha) Energy (cm-1)
----------------------------------------------------
0 E0 0.00000e+00 0.0000
1 E1 6.51318e-02 14294.7851
2 E2 6.51331e-02 14295.0705
3 E3 6.51357e-02 14295.6412
4 E4 6.54081e-02 14355.4093
5 E5 6.54139e-02 14356.6914
6 E6 6.54139e-02 14356.6964
7 E7 6.54146e-02 14356.8542
8 E8 6.54146e-02 14356.8542
9 E9 6.58251e-02 14446.9322
10 E10 6.58257e-02 14447.0634
11 E11 6.58284e-02 14447.6556
12 E12 6.58304e-02 14448.1132
13 E13 6.58310e-02 14448.2433
14 E14 6.58310e-02 14448.2433
15 E15 6.58310e-02 14448.2433
16 E16 8.42507e-02 18490.8840
17 E17 8.42507e-02 18490.8979
18 E18 8.42507e-02 18490.8984
19 E19 8.42508e-02 18490.9198
20 E20 8.42509e-02 18490.9269
----------------------------------------------------
Now compare to the values available on the NIST website which are the following:
Configuration Term J Level (cm-1) Uncertainty (cm-1) Reference
3p64s2 1S 0 0.000 L7185
3p64s4p 3P° 0 15 157.901 L7185
1 15 210.063 L7185
2 15 315.943 L7185
3p63d4s 3D 1 20 335.360 L7185
2 20 349.260 L7185
3 20 371.000 L7185
3p63d4s 1D 2 21 849.634 L7185
3p64s4p 1P° 1 23 652.304 L7185
3p64s5s 3S 1 31 539.495 L7185
3p64s5s 1S 0 33 317.264 L7185
3p63d4p 3F° 2 35 730.454 L7185
3 35 818.713 L7185
4 35 896.889 L7185
3p63d4p 1D° 2 35 835.413 L7185
Source: NIST ASD Levels Output
As you can see, there is quite a big difference between the two sets of results. If we take a look at the difference between the J=0 and J=2 states of the P triplet, we have for the NIST results a value of 158.042 cm-1 whereas QCHEM gives us less than 2 cm-1.
Now this isn’t a strike against QCHEM, as ORCA gave us similar results for the same method. We just want to understand why that is and how confident we can be in those results.
Thank you very much for your help!
Best regards!
Iacobellis Nicolas, Ph.D. Student